Insect mitochondria as targets of freezing-induced injury
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32693722
PubMed Central
PMC7423675
DOI
10.1098/rspb.2020.1273
Knihovny.cz E-zdroje
- Klíčová slova
- freeze tolerance, insects, mitochondrial morphology,
- MeSH
- aklimatizace MeSH
- Drosophilidae MeSH
- hmyz fyziologie MeSH
- larva fyziologie MeSH
- mitochondrie * MeSH
- zmrazování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many insects survive internal freezing, but the great complexity of freezing stress hinders progress in understanding the ultimate nature of freezing-induced injury. Here, we use larvae of the drosophilid fly, Chymomyza costata to assess the role of mitochondrial responses to freezing stress. Respiration analysis revealed that fat body mitochondria of the freeze-sensitive (non-diapause) phenotype significantly decrease oxygen consumption upon lethal freezing stress, while mitochondria of the freeze-tolerant (diapausing, cold-acclimated) phenotype do not lose respiratory capacity upon the same stress. Using transmission electron microscopy, we show that fat body and hindgut mitochondria swell, and occasionally burst, upon exposure of the freeze-sensitive phenotype to lethal freezing stress. By contrast, mitochondrial swelling is not observed in the freeze-tolerant phenotype exposed to the same stress. We hypothesize that mitochondrial swelling results from permeability transition of the inner mitochondrial membrane and loss of its barrier function, which causes osmotic influx of cytosolic water into the matrix. We therefore suggest that the phenotypic transition to diapause and cold acclimation could be associated with adaptive changes that include the protection of the inner mitochondrial membrane against permeability transition and subsequent mitochondrial swelling. Accumulation of high concentrations of proline and other cryoprotective substances might be a part of such adaptive changes as we have shown that freezing-induced mitochondrial swelling was abolished by feeding the freeze-sensitive phenotype larvae on a proline-augmented diet.
Zobrazit více v PubMed
Teets NM, Denlinger DL. 2013. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 38, 105–116. (10.1111/phen.12019) DOI
Salt R. 1961. Principles of insect cold-hardiness. Annu. Rev. Entomol. 6, 55–74. (10.1146/annurev.en.06.010161.000415) DOI
Lee RE., Jr 2010. A primer on insect cold-tolerance. In Low temperature biology of insects (eds Denlinger DL, Lee RE), pp. 3–34. New York, NY: Cambridge University Press.
Muldrew K, Acker JP, Elliott JA, McGann LE. 2004. The water to ice transition: implications for living cells. In Life in the frozen state (eds Fuller BJ, Lane N, Benson EE), pp. 93–134. Boca Raton, FL: CRC Press.
Franks F, Hatley RH. 1991. Stability of proteins at subzero temperatures: thermodynamics and some ecological consequences. Pure Appl. Chem. 63, 1367–1380. (10.1351/pac199163101367) DOI
Privalov PL. 1990. Cold denaturation of protein. Crit. Rev. Biochem. Mol. Biol. 25, 281–306. (10.3109/10409239009090612) PubMed DOI
Koštál V. 2010. Cell structural modifications in insects at low temperature. In Low temperature biology of insects (eds Denlinger DL, Lee R), pp. 116–140. New York, NY: Cambridge University Press.
Toxopeus J, Sinclair BJ. 2018. Mechanisms underlying insect freeze tolerance. Biol. Rev. 93, 1891–1914. (10.1111/brv.12425) PubMed DOI
Storey KB, Storey JM. 1992. Natural freeze tolerance in ectothermic vertebrates. Annu. Rev. Physiol. 54, 619–637. (10.1146/annurev.physiol.54.1.619) PubMed DOI
Storey KB, Storey JM. 1988. Freeze tolerance in animals. Physiol. Rev. 68, 27–84. (10.1152/physrev.1988.68.1.27) PubMed DOI
Chown S., Sinclair B. 2010. The macrophysiology of insect cold hardiness. In Low temperature biology of insects (eds Denlinger DL, Lee RE), pp. 191–222. New York, NY: Cambridge University Press.
MacMillan HA. 2019. Dissecting cause from consequence: a systematic approach to thermal limits. J. Exp. Biol. 222, jeb191593 (10.1242/jeb.191593) PubMed DOI
Koštál V, Zahradníčková H, Šimek P. 2011. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl Acad. Sci. USA 108, 13041–13046. (10.1073/pnas.1107060108) PubMed DOI PMC
Koštál V, Štětina T, Poupardin R, Korbelová J, Bruce AW. 2017. Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling. Proc. Natl Acad. Sci. USA 114, 8532–8537. (10.1073/pnas.1707281114) PubMed DOI PMC
Rozsypal J, Moos M, Šimek P, Koštál V. 2018. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing. J. Exp. Biol. 221, 170464 (10.1242/jeb.170464) PubMed DOI
Des Marteaux LE, Hůla P, Koštál V.. 2019. Transcriptional analysis of insect extreme freeze tolerance. Proc. R. Soc. B 286, 20192019 (10.1098/rspb.2019.2019) PubMed DOI PMC
Štětina T, Hůla P, Moos M, Šimek P, Šmilauer P, Koštál V.. 2018. Recovery from supercooling, freezing, and cryopreservation stress in larvae of the drosophilid fly, Chymomyza costata. Sci. Rep. 8, 4414 (10.1038/s41598-018-22757) PubMed DOI PMC
Nunnari J, Suomalainen A. 2012. Mitochondria: in sickness and in health. Cell 148, 1145–1159. (10.1016/j.cell.2012.02.035) PubMed DOI PMC
Vincent AE, et al. 2016. The spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy. Sci. Rep. 6, 30610 (10.1038/srep30610) PubMed DOI PMC
Abdelwahid E, Yokokura T, Krieser RJ, Balasundaram S, Fowle WH, White K. 2007. Mitochondrial disruption in Drosophila apoptosis. Dev. Cell. 12, 793–806. (10.1016/j.devcel.2007.04.004) PubMed DOI
Sesso A, Belizário JE, Marques MM, Higuchi MDL, Schumacher RI, Colquhoun A, Ito E, Kawakami J. 2012. Mitochondrial swelling and incipient outer membrane rupture in preapoptotic and apoptotic cells. The Anatomical Record: Adv. Integr. Anatomy Evol. Biol. 295, 1647–1659. (10.1002/ar.22553) PubMed DOI PMC
Jiang YF, Lin SS, Chen JM, Tsai HZ, Hsieh TS, Fu CY. 2017. Electron tomographic analysis reveals ultrastructural features of mitochondrial cristae architecture which reflect energetic state and aging. Sci. Rep. 7, 45474 (10.1038/srep45474) PubMed DOI PMC
Bosetti F, Baracca A, Lenaz G, Solaini G. 2004. Increased state 4 mitochondrial respiration and swelling in early post-ischemic reperfusion of rat heart. FEBS Lett. 563, 161–164. (10.1016/S0014-5793(04)00294-7) PubMed DOI
Virolainen E, Blokhina O, Fagerstedt K. 2002. Ca2+- induced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress. Ann. Bot. 90, 509–516. (10.1590/S0100-736X2016000300003) PubMed DOI PMC
Wang ZH, Clark C, Geisbrecht ER. 2016. Analysis of mitochondrial structure and function in the Drosophila larval musculature. Mitochondrion 26, 33–42. (10.1016/j.mito.2015.11.005) PubMed DOI PMC
Rurek M. 2014. Plant mitochondria under a variety of temperature stress conditions. Mitochondrion 19(Pt B), 289–294. (10.1016/j.mito.2014.02.007) PubMed DOI
Sherman J. 1971. Correlation in ultrastructural cryoinjury of mitochondria with aspects of their respiratory function. Exp. Cell Res. 66, 378–384. (10.1016/0014-4827(71)90691-4) PubMed DOI
Sherman J. 1972. Comparison of in vitro and in situ ultrastructural cryoinjury and cryoprotection of mitochondria. Cryobiology 9, 112–122. (10.1016/0011-2240(72)90018-1) PubMed DOI
Collins SD, Allenspach AL, Lee RE Jr. 1997. Ultrastructural effects of lethal freezing on brain, muscle and Malpighian tubules from freeze-tolerant larvae of the gall fly, Eurosta solidaginis. J. Insect Physiol. 43, 39–45. (10.1016/S0022-1910(96)00073-X) PubMed DOI
McMullen DC, Storey KB. 2008. Mitochondria of cold hardy insects: responses to cold and hypoxia assessed at enzymatic, mRNA and DNA levels. Insect Biochem. Mol. Biol. 38, 367–373. (10.1016/j.ibmb.2007.12.003) PubMed DOI
Joanisse DR, Storey KB. 1994. Mitochondrial enzymes during overwintering in two species of cold-hardy gall insects. Insect Biochem. Mol. Biol. 24, 145–150. (10.1016/0965-1748(94)90080-9) DOI
Levin D, Danks H, Barber S. 2003. Variations in mitochondrial DNA and gene transcription in freezing-tolerant larvae of Eurosta solidaginis (Diptera: Tephritidae) and Gynaephora groenlandica (Lepidoptera: Lymantriidae). Insect Mol. Biol. 12, 281–289. (10.1046/j.1365-2583.2003.00413.x) PubMed DOI
Ballantyne JS, Storey KB. 1985. Characterization of mitochondria isolated from the freezing-tolerant larvae of the goldenrod gall fly (Eurosta solidaginis): substrate preferences, salt effects, and pH effects on warm-and cold-acclimated animals. Can. J. Zool. 63, 373–379. (10.1139/z85-057) DOI
Kukal O, Duman JG, Serianni AS. 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. J. Comp. Phys. B 158, 661–671. (10.1007/bf00693004) PubMed DOI
Riihimaa AJ, Kimura MT. 1988. A mutant strain of Chymomyza costata (Diptera: Drosophilidae) insensitive to diapause-inducing action of photoperiod. Physiol. Entomol. 13, 441–445. (10.1111/j.1365-3032.1988.tb01128.x) DOI
Srere P. 1969. Citrate synthase:[EC 4.1. 3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzymol. 13, 3–11. (10.1016/0076-6879(69)13005-0) DOI
Larsen S, et al. 2012. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 590, 3349–3360. (10.1113/jphysiol.2012.230185) PubMed DOI PMC
Ballinger MA, Hess C, Napolitano MW, Bjork JA, Andrews MT. 2016. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311, R325–R336. (10.1152/ajpregu.00463.2015) PubMed DOI
Des Marteaux LE, Štětina T, Koštál V. 2018. Insect fat body cell morphology and response to cold stress is modulated by acclimation. J. Exp. Biol. 221, jeb189647 (10.1242/jeb.189647) PubMed DOI
Haunerland N, Shirk P. 1995. Regional and functional differentiation in the insect fat body. Annu. Rev. Entomol. 40, 121–145. (10.1146/annurev.en.40.010195.001005) DOI
Joanisse D, Storey KB. 1994. Enzyme activity profiles in an overwintering population of freeze-tolerant larvae of the gall fly, Eurosta solidaginis. J. Comp. Phys. B 164, 247–255. (10.1007/BF00354086) DOI
Lee HO, Davidson JM, Duronio RJ. 2009. Endoreplication: polyploidy with purpose. Genes Dev. 23, 2461–2477. (10.1101/gad.1829209) PubMed DOI PMC
Dias CL, Ala-Nissila T, Wong-ekkabut J, Vattulainen I, Grant M, Karttunen M. 2010. The hydrophobic effect and its role in cold denaturation. Cryobiology 60, 91–99. (10.1016/j.cryobiol.2009.07.005) PubMed DOI
Sanfelice D, Temussi PA. 2016. Cold denaturation as a tool to measure protein stability. Biophys. Chem. 208, 4–8. (10.1016/j.bpc.2015.05.007) PubMed DOI PMC
Tamiya T, Okahashi N, Sakuma R, Aoyama T, Akahane T, Matsumoto JJ. 1985. Freeze denaturation of enzymes and its prevention with additives. Cryobiology 22, 446–456. (10.1016/0011-2240(85)90156-7) PubMed DOI
Carpenter JF, Crowe JH. 1988. The mechanism of cryoprotection of proteins by solutes. Cryobiology 25, 244–255. (10.1016/0011-2240(88)90032-6) PubMed DOI
Halestrap AP. 2009. What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol. 46, 821–831. (10.1016/j.yjmcc.2009.02.021) PubMed DOI
Hunter DR, Haworth RA. 1979. The Ca2+-induced membrane transition in mitochondria: I. The protective mechanisms. Arch. Biochem. Biophys. 195, 453–459. (10.1016/0003-9861(79)90371-0) PubMed DOI
Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. 2018. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. 70, 56–63. (10.1016/j.ceca.2017.05.004) PubMed DOI
Doran E, Halestrap AP. 2000. Cytochrome c release from isolated rat liver mitochondria can occur independently of outer-membrane rupture: possible role of contact sites. Biochem. J. 348, 343–350. (10.1042/0264-6021:3480343) PubMed DOI PMC
Green DR, Kroemer G. 2004. The pathophysiology of mitochondrial cell death. Science 305, 626–629. (10.1126/science.1099320) PubMed DOI
Halestrap AP, Clarke SJ, Javadov SA. 2004. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc. Res. 61, 372–385. (10.1016/S0008-6363(03)00533-9) PubMed DOI
Menze MA, Hutchinson K, Laborde SM, Hand SC. 2005. Mitochondrial permeability transition in the crustacean Artemia franciscana: absence of a calcium-regulated pore in the face of profound calcium storage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R68–R76. (10.1152/ajpregu.00844.2004) PubMed DOI
Dierks T, Salentin A, Krämer R. 1990. Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents: evidence for a preformed channel as a structural requirement of carrier-mediated transport. Biochim. Biophys. Acta 1028, 281–288. (10.1016/0005-2736(90)90177-p) PubMed DOI
He L, Lemasters JJ. 2002. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett. 512, 1–7. (10.1016/s0014-5793(01)03314-2) PubMed DOI
Chapman D. 1975. Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys. 8, 185–235. (10.1017/s0033583500001797) PubMed DOI
Rudolph AS, Crowe JH. 1985. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22, 367–377. (10.1016/0011-2240(85)90184-1) PubMed DOI
Rudolph AS, Crowe JH, Crowe LM. 1986. Effects of three stabilizing agents—proline, betaine, and trehalose—on membrane phospholipids. Arch. Biochem. Biophys. 245, 134–143. (10.1016/0003-9861(86)90197-9) PubMed DOI
Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH. 1987. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24, 324–331. (10.1016/0011-2240(87)90036-8) PubMed DOI
Crowe JH. 2007. Trehalose as a ‘chemical chaperone’. In Molecular aspects of the stress response: chaperones, membranes and networks (eds Csermely P, Vígh L), vol. 594, pp. 143–158. New York, NY: Springer.
Kaushik JK, Bhat R. 2003. Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J. Biol. Chem. 278, 26 458–26 465. (10.1074/jbc.M300815200) PubMed DOI
figshare
10.6084/m9.figshare.c.5053544