Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21788482
PubMed Central
PMC3156168
DOI
10.1073/pnas.1107060108
PII: 1107060108
Knihovny.cz E-zdroje
- MeSH
- 1-pyrrolin-5-karboxylátdehydrogenasa nedostatek MeSH
- aklimatizace účinky léků MeSH
- analýza hlavních komponent MeSH
- analýza přežití MeSH
- dieta MeSH
- diferenciální skenovací kalorimetrie MeSH
- Drosophilidae účinky léků fyziologie MeSH
- dusík farmakologie MeSH
- fyziologická adaptace účinky léků MeSH
- kryoprezervace * MeSH
- larva účinky léků fyziologie MeSH
- osmóza účinky léků MeSH
- prolin metabolismus MeSH
- prolinoxidasa nedostatek MeSH
- sklo MeSH
- stravovací zvyklosti účinky léků MeSH
- tělesná voda účinky léků MeSH
- vrozené poruchy metabolismu aminokyselin patofyziologie veterinární MeSH
- zmrazování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-pyrrolin-5-karboxylátdehydrogenasa MeSH
- dusík MeSH
- prolin MeSH
- prolinoxidasa MeSH
The larva of the drosophilid fly, Chymomyza costata, is probably the most complex metazoan organism that can survive submergence in liquid nitrogen (-196 °C) in a fully hydrated state. We examined the associations between the physiological and biochemical parameters of differently acclimated larvae and their freeze tolerance. Entering diapause is an essential and sufficient prerequisite for attaining high levels of survival in liquid nitrogen (23% survival to adult stage), although cold acclimation further improves this capacity (62% survival). Profiling of 61 different metabolites identified proline as a prominent compound whose concentration increased from 20 to 147 mM during diapause transition and subsequent cold acclimation. This study provides direct evidence for the essential role of proline in high freeze tolerance. We increased the levels of proline in the larval tissues by feeding larvae proline-augmented diets and found that this simple treatment dramatically improved their freeze tolerance. Cell and tissue survival following exposure to liquid nitrogen was evident in proline-fed nondiapause larvae, and survival to adult stage increased from 0% to 36% in proline-fed diapause-destined larvae. A significant statistical correlation was found between the whole-body concentration of proline, either natural or artificial, and survival to the adult stage in liquid nitrogen for diapause larvae. Differential scanning calorimetry analysis suggested that high proline levels, in combination with a relatively low content of osmotically active water and freeze dehydration, increased the propensity of the remaining unfrozen water to undergo a glass-like transition (vitrification) and thus facilitated the prevention of cryoinjury.
Zobrazit více v PubMed
Salt RW. Principles of insect cold-hardiness. Annu Rev Entomol. 1961;6:55–74.
Zachariassen KE. Physiology of cold tolerance in insects. Physiol Rev. 1985;65:799–832. PubMed
Danks HV. Winter habits and ecological adaptations for winter survival. In: Lee RE Jr, Denlinger DL, editors. Insects at Low Temperature. New York: Chapman and Hall; 1991. pp. 318–359.
Hackman W, Lakovaara S, Saura A, Sorsa M, Vepsalainen K. On the biology and karyology of Chymomyza costata Zetterstedt, with reference to the taxonomy and distribution of various species of Chymomyza (Dipt, Drosophilidae) Ann Entomol Fenn. 1970;36:1–9.
Koštál V, Shimada K, Hayakawa Y. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata. J Insect Physiol. 2000;46:417–428. PubMed
Enomoto O. Larval diapause in Chymomyza costata (Diptera: Drosophilidae) II. Frost avoidance. Low Temp Sci, Ser B. 1981;39:31–39.
Shimada K, Riihimaa A. Cold acclimation, inoculative freezing and slow cooling: Essential factors contributing to the freezing-tolerance in diapausing larvae of Chymomyza costata (Diptera: Drosophilidae) Cryo Letters. 1988;9:5–10.
Shimada K, Riihimaa A. Cold-induced freezing tolerance in diapausing and non-diapausing larvae of Chymomyza costata (Diptera: Drosophilidae) with accumulation of trehalose and proline. Cryo Letters. 1990;11:243–250.
Moon I, Fujikawa S, Shimada K. Cryopreservation of Chymomyza larvae (Diptera: Drosophilidae) at -196 °C with extracellular freezing. Cryo Letters. 1996;17:105–110.
Koštál V, Berková P, Šimek P. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae) Comp Biochem Physiol B Biochem Mol Biol. 2003;135:407–419. PubMed
Storey KB, Storey JM. Biochemistry of cryoprotectants. In: Lee RE Jr, Denlinger DL, editors. Insects at Low Temperature. New York: Chapman and Hall; 1991. pp. 64–93.
Hazel JR. Thermal adaptation in biological membranes: Is homeoviscous adaptation the explanation? Annu Rev Physiol. 1995;57:19–42. PubMed
Koštál V. Eco-physiological phases of insect diapause. J Insect Physiol. 2006;52:113–127. PubMed
Mazur P. Equilibrium, quasi-equilibrium, and non-equilibrium freezing of mammalian embryos. Cell Biophys. 1990;17:53–92. PubMed
Pegg DE. The current status of tissue cryopreservation. Cryo Letters. 2001;22:105–114. PubMed
Taylor MJ, Song YC, Brockbank KGM. Vitrification in tissue preservation: New developments. In: Fuller BJ, Lane N, Benson EE, editors. Life in the Frozen State. Boca Raton: CRC Press; 2004. pp. 603–641.
Leopold RA, Rinehart JP. A template for insect cryopreservation. In: Denlinger DL, Lee RE Jr, editors. Low Temperature Biology of Insects. Cambridge: Cambridge University Press; 2010. pp. 325–341.
McFadzen I, Utting S. The viability and growth of cryopreserved bivalve larvae. World Aquac. 1990;T-13:65.
Olive PJW, Wang WB. Cryopreservation of Nereis virens (Polychaeta, Annelida) larvae: The mechanism of cryopreservation of a differentiated metazoan. Cryobiology. 1997;34:284–294.
Keilin D. The problem of anabiosis or latent life: history and current concept. P Roy Soc B-Biol Sci. 1959;150:149–191. PubMed
Wright JC. Cryptobiosis 300 years on from van Leuwenhoek: What have we learned about tardigrades? Zool Anz. 2001;240:563–582.
Clegg JS. Cryptobiosis—a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol. 2001;128:613–624. PubMed
Jönsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P. Tardigrades survive exposure to space in low Earth orbit. Curr Biol. 2008;18:R729–R731. PubMed
Storey KB, Storey JM. Freeze tolerance in animals. Physiol Rev. 1988;68:27–84. PubMed
Duman JG. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol. 2001;63:327–357. PubMed
Storey KB, Baust JG, Buescher P. Determination of water “bound” by soluble subcellular components during low temperature acclimation of the overwintering gall fly larva, Eurosta solidaginis. Cryobiology. 1981;18:315–321. PubMed
Franks F. Unfrozen water: yes; unfreezable water: hardly; bound water: certainly not. An editorial note. Cryo Letters. 1986;7:207.
Block W. Water or ice?—the challenge for invertebrate cold survival. Sci Prog. 2003;86:77–101. PubMed PMC
MacFarlane DR. Physical aspects of vitrification in aquaeous solution. Cryobiology. 1987;24:181–195.
Sakurai M, et al. Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplancki. Proc Natl Acad Sci USA. 2008;105:5093–5098. PubMed PMC
Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO. High temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool. 2009;82:749–755. PubMed
Sformo T, et al. Deep supercooling, vitrification and limited survival to -100 °C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol. 2010;213:502–509. PubMed
Buitink J, Hemminga MA, Hoekstra FA. Is there a role for oligosacharides in seed longevity? An assessment of intracellular glass stability. Plant Physiol. 2000;122:1217–1224. PubMed PMC
Hoekstra FA, Golovina EA, Buitink J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 2001;6:431–438. PubMed
Storey KB, Baust JG, Storey JM. Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. J Comp Physiol B. 1981;144:183–190.
Morgan TD, Chippendale GM. Free amino acids of the haemolymph of the southwestern corn borer and the european corn borer in relation to their diapause. J Insect Physiol. 1983;29:735–740.
Fields PG, et al. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferugineus (Coleoptera) J Insect Physiol. 1998;44:955–968. PubMed
Dörfling K, et al. Heritable improvement of frost tolerance in winter wheat by in vitro selection of hydroxyproline-resistant proline overproducing mutants. Euphytica. 1997;93:1–10.
Nanjo T, et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 1999;461:205–210. PubMed
Lee RE., Jr . A primer on insect cold-tolerance. In: Denlinger DL, Lee RE Jr, editors. Low Temperature Biology of Insects. Cambridge: Cambridge University Press; 2010. pp. 3–34.
Murray P, Hayward SAL, Govan GG, Gracey AY, Cossins AR. An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2007;104:5489–5494. PubMed PMC
Koštál V, Šimunková P, Kobelková A, Shimada K. Cell cycle arrest as a hallmark of insect diapause: Changes in gene transcription during diapause induction in the drosophilid fly, Chymomyza costata. Insect Biochem Mol Biol. 2009;39:875–883. PubMed
Denlinger DL. Regulation of diapause. Annu Rev Entomol. 2002;47:93–122. PubMed
MacRae TH. Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci. 2010;67:2405–2424. PubMed PMC
Arakawa T, Timasheff SN. The stabilization of proteins by osmolytes. Biophys J. 1985;47:411–414. PubMed PMC
Arakawa T, Timasheff SN. Preferential interactions of proteins with solvent components in aquaeous amino acid solutions. Arch Biochem Biophys. 1983;224:169–177. PubMed
Carpenter JF, Hand SC, Crowe LM, Crowe JH. Cryoprotection of phosphofructokinase with organic solutes: Characterization of enhanced protection in the presence of divalent cations. Arch Biochem Biophys. 1986;250:505–512. PubMed
Carpenter JF, Crowe JH. The mechanisms of cryoprotection of proteins by solutes. Cryobiology. 1988;25:244–255. PubMed
Rudolph AS, Crowe JH, Crowe LM. Effects of three stabilizing agents—proline, betaine, and trehalose—on membrane phospholipids. Arch Biochem Biophys. 1986;245:134–143. PubMed
Riihimaa AJ, Kimura MT. A mutant strain of Chymomyza costata (Diptera: Drosophilidae) insensitive to diapause-inducing action of photoperiod. Physiol Entomol. 1988;13:441–445.
Block W. Differential scanning calorimetry in ecophysiological research. Acta Oecol. 1994;15:13–22.
Koštál V, Zahradníčková H, Šimek P, Zelený J. Multiple component system of sugars and polyols in the overwintering spruce bark beetle, Ips typographus. J Insect Physiol. 2007;53:580–586. PubMed
Hušek P. Urine organic acid profiling by capillary gas chromatography after a simple sample pretreatment. Clin Chem. 1997;43:1999–2001. PubMed
Hušek P, Šimek P. Advances in amino acid analysis. LC-GC North America. 2001;19:986–999.
Insect cross-tolerance to freezing and drought stress: role of metabolic rearrangement
Insect mitochondria as targets of freezing-induced injury
Transcriptional analysis of insect extreme freeze tolerance
Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect
Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella)