Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly Drosophila melanogaster
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27573891
PubMed Central
PMC5004108
DOI
10.1038/srep32346
PII: srep32346
Knihovny.cz E-zdroje
- MeSH
- Drosophila melanogaster genetika fyziologie MeSH
- kryobiologie * MeSH
- kryoprezervace MeSH
- larva genetika fyziologie MeSH
- nízká teplota škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cryopreservation techniques proposed for embryos of the fruit fly Drosophila melanogaster are not yet ready for practical use. Alternative methods for long-term storage of D. melanogaster strains, although urgently needed, do not exist. Herein, we describe a narrow interval of low temperatures under which the larvae of D. melanogaster can be stored in quiescence for up to two months. The development of larvae was arrested at the pre-wandering stage under fluctuating thermal regime (FTR), which simultaneously resulted in diminishing the accumulation of indirect chill injuries. Our physiological, metabolomic, and transcriptomic analyses revealed that compared to larvae stored at constant low temperatures, the larvae stored under FTR conditions were able to decrease the rates of depletion of energy substrates, exploited brief warm episodes of FTR for homeostatic control of metabolite levels, and more efficiently exerted protection against oxidative damage.
Faculty of Science University of South Bohemia Branišovská 31 37005 České Budějovice Czech Republic
Institut für Populationsgenetik Vetmeduni Vienna Vienna Austria
Institute of Entomology Biology Centre CAS Branišovská 31 37005 České Budějovice Czech Republic
Université de Rennes 1 UMR CNRS 6553 ECOBIO 263 Avenue du Général Leclerc 35042 Rennes France
Zobrazit více v PubMed
Leopold R. A. & Rinehart J. P. A template for insect cryopreservation in Low Temperature Biology of Insects (eds. Denlinger D. L. & Lee R. E.) 325–341 (Cambridge University Press, 2010).
Denlinger D. L. Why study diapause? Entomol. Sci. 38, 1–9 (2008).
Steponkus P. L. et al. Cryopreservation of Drosophila melanogaster embryos. Nature 345, 17–172 (1990). PubMed
Mazur P., Cole J. W., Schreuders P. D. & Mahowald A. P. Cryobiological preservation of Drosophila embryos. Science 258, 1932–1935 (1992). PubMed
Pegg D. E. The current status of tissue cryopreservation. CryoLett. 22, 105–114 (2001). PubMed
Donnez J. et al. Ovarian tissue cryopreservation and transplantation: a review. Human Reprod. Update 12, 519–535 (2006). PubMed
Koštál V., Zahradníčková H. & Šimek P. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl. Acad. Sci. USA 108, 13035–13040 (2011). PubMed PMC
Koštál V., Šimek P., Zahradníčková H., Cimlová J. & Štětina T. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc. Natl. Acad. Sci. USA 109, 3270–3274 (2012). PubMed PMC
Saunders D. S. & Gilbert L. I. Regulation of ovarian diapause in Drosophila melanogaster by photoperiod and moderately low temperature. J. Insect Physiol. 36, 195–200 (1990).
Kubrak O., Kučerová L., Theopold U. & Nässel D. R. The sleeping beauty: how reproductive diapause affects hormone signalling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. Plos One 9, e113051 (2014). PubMed PMC
Koštál V. et al. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. Plos One 6, e25025 (2011). PubMed PMC
Strachan L. A., Tarnowski-Garner H. E., Marshall K. E. & Sinclair B. J. The evolution of cold tolerance in Drosophila larvae. Physiol. Biochem. Zool. 84, 43–53 (2011). PubMed
Hochachka P. W. Defense strategies against hypoxia and hypothermia. Science 231, 234–241 (1986). PubMed
Koštál V., Vambera J. & Bastl J. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J. Exp. Biol. 207, 1509–1521 (2004). PubMed
MacMillan H. A. & Sinclair B. J. The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 214, 726–734 (2011). PubMed
MacMillan H. A. et al. Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance. J. Exp. Biol. 218, 423–432 (2015). PubMed
MacMillan H. A., Andersen J. L., Davies S. A. & Overgaard J. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci. Rep. 5, 18607 (2015). PubMed PMC
Loeb J. & Northrop J. H. On the influence of food and temperature upon the duration of life. J. Biol. Chem. 32, 103–121 (1917).
Bliss C. I. Temperature characteristics for prepupal development in Drosophila melanogaster. J. Gen. Physiol. 9, 467–495 (1927). PubMed PMC
Colinet H., Sinclair B. J., Vernon P. & Renault D. Insects at fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140 (2015). PubMed
Nedvěd O., Lavy D. & Verhoef H. A. Modelling the time–temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan. Funct. Ecol. 12, 816–824 (1998) c.
Honěk A. & Kocourek F. Temperature and development time in insects: A general relationship between thermal constants. Zool. Jb. Syst. 117, 401–439 (1990).
Koštál V., Renault D., Mehrabianová A. & Bastl J. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis. Comp. Biochem. Physiol. A 147, 231–238 (2007). PubMed
Zhang J., Marshall K., Westwood J. T., Clark M. S. & Sinclair B. J. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J. Exp. Biol. 214, 4021–4029 (2011). PubMed
Tollarová-Borovanská M., Lalouette L. & Koštál V. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: Role of 70 kDa heat shock protein expression. CryoLett. 30, 312–319 (2009). PubMed
Dolo V. H., Yi S. X. & Lee R. E. Jr. High temperature pulses decrease indirect chilling injury and elevate ATP levels in the flesh fly, Sarcophaga crassipalpis. Cryobiol. 60, 351–353 (2010). PubMed
Lalouette L., Williams C. M., Hervant F., Sinclair B. J. & Renault D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A 158, 229–234 (2011). PubMed
Lee R. E. Jr. A primer on insect cold-tolerance in Low Temperature Biology of Insects (eds Denlinger D. L. & Lee R. E. Jr.) 3–34 (Cambridge University Press, 2010).
Muldrew K., Acker J. P., Elliott J. A. V. & McGann L. E. The water to ice transition: Implications for living cells in Life in the Frozen State (eds Fuller B., Lane N. & Benson E. E.) 67–108 (CRC Press, 2004).
Privalov P. Cold denaturation of proteins. Crit. Rev. Biochem. Mol. Biol. 25, 281–305 (1990). PubMed
Tsai C.-J., Maizel J. V. & Nussinov R. The hydrophobic effect: A new insight from cold denaturation and two-state water structure. Crit. Rev. Biochem. Mol. Biol. 37, 55–69 (2002). PubMed
Drobnis E. Z. et al. Cold shock damage is due to lipid phase transition in cell membranes: a demonstration using sperm as a model. J. Exp. Zool. 265, 432–437 (1993). PubMed
Thompson S. N. Trehalose — the insect blood sugar. Adv. Insect Physiol. 31, 205–285 (2003).
Kocourek J. & Ballou C. E. Method for fingerprinting yeast cell wall mannans. J. Bacteriol. 100, 1175–1181 (1969). PubMed PMC
Rojas R. R. & Leopold R. A. Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiol. 33, 447–458 (1996).
Torson A. S., Yocum G. D., Rinehart J. P., Kemp W. P. & Browsher J. H. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata. J. Exp. Biol. 218, 1060–1068 (2015). PubMed
Aguila J. R., Suszko J., Gibbs A. G. & Hoshizaki D. K. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 210, 956–963 (2007). PubMed
Merkey A. B., Wong C. K., Hoshizaki D. K. & Gibbs A. G. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 57, 1437–1445 (2011). PubMed
Koštál V., Korbelová J., Poupardin R., Moos M. & Šimek P. Arginine and proline applied as food additives stimulate high freeze-tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. in press, doi: 10.1242/jeb.142158 (2016). PubMed DOI
Arakawa T. & Timasheff S. N. The stabilization of proteins by osmolytes. Biophys. J. 47, 411–41 (1985). PubMed PMC
Timasheff S. N. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. USA 99, 9721–9726 (2002). PubMed PMC
Storey K. B., Baust J. G. & Storey J. M. Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. J. Comp. Physiol. 144, 183–190 (1981).
Morgan T. D. & Chippendale G. M. Free amino acids of the haemolymph of the southwestern corn borer and the european corn borer in relation to their diapause. J. Insect Physiol. 29, 735–740 (1983).
Fields P. G. et al. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferugineus (Coleoptera). J. Insect Physiol. 44, 995–968 (1998). PubMed
Dörfling K. et al. Heritable improvement of frost tolerance in winter wheat by in vitro selection of hydroxyproline-resistant proline overproducing mutants. Euphytica 93, 1–10 (1997).
Nanjo T. et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana.FEBS Lett. 461, 205–210 (1999). PubMed
Pullin A. S. Physiological relationships between insect diapause and cold tolerance: coevolution or coincidence? Eur. J. Entomol. 93, 121–129 (1996).
Koštál V., Yanagimoto M. & Bastl J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comp. Biochem. Physiol. B 143, 171–179 (2006). PubMed
Des Marteaux L. E. & Sinclair B. J. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure. J. Insect Physiol. 89, 19–27 (2016). PubMed
Boutilier R. G. Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol. 204, 3171–3181 (2001). PubMed
Zachariassen K. E., Kristiansen E. & Pedersen S. A. Inorganic ions in cold-hardiness. Cryobiol. 48, 126–133 (2004). PubMed
Lindsley D. L. & Grell E. H. Genetic variations of Drosophila melanogaster. Publs. Carnegie Instn. 627, 469 pp (1968).
Hušek P. & Šimek P. Advances in amino acid analysis. LC-GC North Am. 19, 986–999 (2001).
Dolédec S. & Chessel D. Recent developments in linear ordination methods for environmental sciences. Adv. Ecol. 1, 133–155 (1991).
Bolger A. M., Lohse M. & Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics btu170 (2014). PubMed PMC
Kim D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36. PubMed PMC
Trapnell C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol. 28, 511–515 (2010). PubMed PMC
Trapnell C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnol. 31, 46–53 (2013). PubMed PMC
Huang D. W., Sherman B. T. & Lempicki R. A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 4, 44–57 (2009). PubMed
Ponton F., Chapuis M. P., Pernice M., Sword G. A. & Simpson S. J. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J. Insect Physiol. 57, 840–850 (2011). PubMed
Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid. Res. 29, No. 9 00 (2001). PubMed PMC
Smith P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985). PubMed
Bueding E. & Orrell S. A. A mild procedure for the isolation of polydisperse glycogen from animal tissues. J. Biol. Chem. 239, 4018–4020 (1964). PubMed
Dubois M., Gilles A., Hamilthon J. J., Rebers P. A. & Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).
Gessner M. O. & Neumann P. T. M. Total lipids in Methods to study litter decomposition: A practical guide (ed. Graça M. A. S., Bärlocher. F. & Gessner M. O.) 103–107 (Springer, 2005).
Folch A. J., Lees M. & Stanley G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957). PubMed
Koštál V., Urban T., Řimnáčová L., Berková P. & Šimek P. Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus. J. Insect Physiol. 59, 934–941 (2013). PubMed