Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly Drosophila melanogaster

. 2016 Aug 30 ; 6 () : 32346. [epub] 20160830

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27573891

The cryopreservation techniques proposed for embryos of the fruit fly Drosophila melanogaster are not yet ready for practical use. Alternative methods for long-term storage of D. melanogaster strains, although urgently needed, do not exist. Herein, we describe a narrow interval of low temperatures under which the larvae of D. melanogaster can be stored in quiescence for up to two months. The development of larvae was arrested at the pre-wandering stage under fluctuating thermal regime (FTR), which simultaneously resulted in diminishing the accumulation of indirect chill injuries. Our physiological, metabolomic, and transcriptomic analyses revealed that compared to larvae stored at constant low temperatures, the larvae stored under FTR conditions were able to decrease the rates of depletion of energy substrates, exploited brief warm episodes of FTR for homeostatic control of metabolite levels, and more efficiently exerted protection against oxidative damage.

Zobrazit více v PubMed

Leopold R. A. & Rinehart J. P. A template for insect cryopreservation in Low Temperature Biology of Insects (eds. Denlinger D. L. & Lee R. E.) 325–341 (Cambridge University Press, 2010).

Denlinger D. L. Why study diapause? Entomol. Sci. 38, 1–9 (2008).

Steponkus P. L. PubMed

Mazur P., Cole J. W., Schreuders P. D. & Mahowald A. P. Cryobiological preservation of PubMed

Pegg D. E. The current status of tissue cryopreservation. CryoLett. 22, 105–114 (2001). PubMed

Donnez J. PubMed

Koštál V., Zahradníčková H. & Šimek P. Hyperprolinemic larvae of the drosophilid fly, PubMed PMC

Koštál V., Šimek P., Zahradníčková H., Cimlová J. & Štětina T. Conversion of the chill susceptible fruit fly larva ( PubMed PMC

Saunders D. S. & Gilbert L. I. Regulation of ovarian diapause in

Kubrak O., Kučerová L., Theopold U. & Nässel D. R. The sleeping beauty: how reproductive diapause affects hormone signalling, metabolism, immune response and somatic maintenance in PubMed PMC

Koštál V. PubMed PMC

Strachan L. A., Tarnowski-Garner H. E., Marshall K. E. & Sinclair B. J. The evolution of cold tolerance in PubMed

Hochachka P. W. Defense strategies against hypoxia and hypothermia. Science 231, 234–241 (1986). PubMed

Koštál V., Vambera J. & Bastl J. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of PubMed

MacMillan H. A. & Sinclair B. J. The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 214, 726–734 (2011). PubMed

MacMillan H. A. PubMed

MacMillan H. A., Andersen J. L., Davies S. A. & Overgaard J. The capacity to maintain ion and water homeostasis underlies interspecific variation in PubMed PMC

Loeb J. & Northrop J. H. On the influence of food and temperature upon the duration of life. J. Biol. Chem. 32, 103–121 (1917).

Bliss C. I. Temperature characteristics for prepupal development in PubMed PMC

Colinet H., Sinclair B. J., Vernon P. & Renault D. Insects at fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140 (2015). PubMed

Nedvěd O., Lavy D. & Verhoef H. A. Modelling the time–temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan. Funct. Ecol. 12, 816–824 (1998) c.

Honěk A. & Kocourek F. Temperature and development time in insects: A general relationship between thermal constants. Zool. Jb. Syst. 117, 401–439 (1990).

Koštál V., Renault D., Mehrabianová A. & Bastl J. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis. Comp. Biochem. Physiol. A 147, 231–238 (2007). PubMed

Zhang J., Marshall K., Westwood J. T., Clark M. S. & Sinclair B. J. Divergent transcriptomic responses to repeated and single cold exposures in PubMed

Tollarová-Borovanská M., Lalouette L. & Koštál V. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: Role of 70 kDa heat shock protein expression. CryoLett. 30, 312–319 (2009). PubMed

Dolo V. H., Yi S. X. & Lee R. E. Jr. High temperature pulses decrease indirect chilling injury and elevate ATP levels in the flesh fly, Sarcophaga crassipalpis. Cryobiol. 60, 351–353 (2010). PubMed

Lalouette L., Williams C. M., Hervant F., Sinclair B. J. & Renault D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A 158, 229–234 (2011). PubMed

Lee R. E. Jr. A primer on insect cold-tolerance in Low Temperature Biology of Insects (eds Denlinger D. L. & Lee R. E. Jr.) 3–34 (Cambridge University Press, 2010).

Muldrew K., Acker J. P., Elliott J. A. V. & McGann L. E. The water to ice transition: Implications for living cells in Life in the Frozen State (eds Fuller B., Lane N. & Benson E. E.) 67–108 (CRC Press, 2004).

Privalov P. Cold denaturation of proteins. Crit. Rev. Biochem. Mol. Biol. 25, 281–305 (1990). PubMed

Tsai C.-J., Maizel J. V. & Nussinov R. The hydrophobic effect: A new insight from cold denaturation and two-state water structure. Crit. Rev. Biochem. Mol. Biol. 37, 55–69 (2002). PubMed

Drobnis E. Z. PubMed

Thompson S. N. Trehalose — the insect blood sugar. Adv. Insect Physiol. 31, 205–285 (2003).

Kocourek J. & Ballou C. E. Method for fingerprinting yeast cell wall mannans. J. Bacteriol. 100, 1175–1181 (1969). PubMed PMC

Rojas R. R. & Leopold R. A. Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiol. 33, 447–458 (1996).

Torson A. S., Yocum G. D., Rinehart J. P., Kemp W. P. & Browsher J. H. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee PubMed

Aguila J. R., Suszko J., Gibbs A. G. & Hoshizaki D. K. The role of larval fat cells in adult PubMed

Merkey A. B., Wong C. K., Hoshizaki D. K. & Gibbs A. G. Energetics of metamorphosis in PubMed

Koštál V., Korbelová J., Poupardin R., Moos M. & Šimek P. Arginine and proline applied as food additives stimulate high freeze-tolerance in larvae of PubMed DOI

Arakawa T. & Timasheff S. N. The stabilization of proteins by osmolytes. Biophys. J. 47, 411–41 (1985). PubMed PMC

Timasheff S. N. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. USA 99, 9721–9726 (2002). PubMed PMC

Storey K. B., Baust J. G. & Storey J. M. Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. J. Comp. Physiol. 144, 183–190 (1981).

Morgan T. D. & Chippendale G. M. Free amino acids of the haemolymph of the southwestern corn borer and the european corn borer in relation to their diapause. J. Insect Physiol. 29, 735–740 (1983).

Fields P. G. PubMed

Dörfling K.

Nanjo T. PubMed

Pullin A. S. Physiological relationships between insect diapause and cold tolerance: coevolution or coincidence? Eur. J. Entomol. 93, 121–129 (1996).

Koštál V., Yanagimoto M. & Bastl J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach ( PubMed

Des Marteaux L. E. & Sinclair B. J. Ion and water balance in PubMed

Boutilier R. G. Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol. 204, 3171–3181 (2001). PubMed

Zachariassen K. E., Kristiansen E. & Pedersen S. A. Inorganic ions in cold-hardiness. Cryobiol. 48, 126–133 (2004). PubMed

Lindsley D. L. & Grell E. H. Genetic variations of

Hušek P. & Šimek P. Advances in amino acid analysis. LC-GC North Am. 19, 986–999 (2001).

Dolédec S. & Chessel D. Recent developments in linear ordination methods for environmental sciences. Adv. Ecol. 1, 133–155 (1991).

Bolger A. M., Lohse M. & Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics btu170 (2014). PubMed PMC

Kim D. PubMed PMC

Trapnell C. PubMed PMC

Trapnell C. PubMed PMC

Huang D. W., Sherman B. T. & Lempicki R. A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 4, 44–57 (2009). PubMed

Ponton F., Chapuis M. P., Pernice M., Sword G. A. & Simpson S. J. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in PubMed

Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid. Res. 29, No. 9 00 (2001). PubMed PMC

Smith P. K. PubMed

Bueding E. & Orrell S. A. A mild procedure for the isolation of polydisperse glycogen from animal tissues. J. Biol. Chem. 239, 4018–4020 (1964). PubMed

Dubois M., Gilles A., Hamilthon J. J., Rebers P. A. & Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

Gessner M. O. & Neumann P. T. M. Total lipids in Methods to study litter decomposition: A practical guide (ed. Graça M. A. S., Bärlocher. F. & Gessner M. O.) 103–107 (Springer, 2005).

Folch A. J., Lees M. & Stanley G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957). PubMed

Koštál V., Urban T., Řimnáčová L., Berková P. & Šimek P. Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus. J. Insect Physiol. 59, 934–941 (2013). PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...