Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly Drosophila melanogaster

. 2016 Aug 30 ; 6 () : 32346. [epub] 20160830

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27573891

The cryopreservation techniques proposed for embryos of the fruit fly Drosophila melanogaster are not yet ready for practical use. Alternative methods for long-term storage of D. melanogaster strains, although urgently needed, do not exist. Herein, we describe a narrow interval of low temperatures under which the larvae of D. melanogaster can be stored in quiescence for up to two months. The development of larvae was arrested at the pre-wandering stage under fluctuating thermal regime (FTR), which simultaneously resulted in diminishing the accumulation of indirect chill injuries. Our physiological, metabolomic, and transcriptomic analyses revealed that compared to larvae stored at constant low temperatures, the larvae stored under FTR conditions were able to decrease the rates of depletion of energy substrates, exploited brief warm episodes of FTR for homeostatic control of metabolite levels, and more efficiently exerted protection against oxidative damage.

Zobrazit více v PubMed

Leopold R. A. & Rinehart J. P. A template for insect cryopreservation in Low Temperature Biology of Insects (eds. Denlinger D. L. & Lee R. E.) 325–341 (Cambridge University Press, 2010).

Denlinger D. L. Why study diapause? Entomol. Sci. 38, 1–9 (2008).

Steponkus P. L. et al. Cryopreservation of Drosophila melanogaster embryos. Nature 345, 17–172 (1990). PubMed

Mazur P., Cole J. W., Schreuders P. D. & Mahowald A. P. Cryobiological preservation of Drosophila embryos. Science 258, 1932–1935 (1992). PubMed

Pegg D. E. The current status of tissue cryopreservation. CryoLett. 22, 105–114 (2001). PubMed

Donnez J. et al. Ovarian tissue cryopreservation and transplantation: a review. Human Reprod. Update 12, 519–535 (2006). PubMed

Koštál V., Zahradníčková H. & Šimek P. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc. Natl. Acad. Sci. USA 108, 13035–13040 (2011). PubMed PMC

Koštál V., Šimek P., Zahradníčková H., Cimlová J. & Štětina T. Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism. Proc. Natl. Acad. Sci. USA 109, 3270–3274 (2012). PubMed PMC

Saunders D. S. & Gilbert L. I. Regulation of ovarian diapause in Drosophila melanogaster by photoperiod and moderately low temperature. J. Insect Physiol. 36, 195–200 (1990).

Kubrak O., Kučerová L., Theopold U. & Nässel D. R. The sleeping beauty: how reproductive diapause affects hormone signalling, metabolism, immune response and somatic maintenance in Drosophila melanogaster. Plos One 9, e113051 (2014). PubMed PMC

Koštál V. et al. Long-term cold acclimation extends survival time at 0°C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. Plos One 6, e25025 (2011). PubMed PMC

Strachan L. A., Tarnowski-Garner H. E., Marshall K. E. & Sinclair B. J. The evolution of cold tolerance in Drosophila larvae. Physiol. Biochem. Zool. 84, 43–53 (2011). PubMed

Hochachka P. W. Defense strategies against hypoxia and hypothermia. Science 231, 234–241 (1986). PubMed

Koštál V., Vambera J. & Bastl J. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J. Exp. Biol. 207, 1509–1521 (2004). PubMed

MacMillan H. A. & Sinclair B. J. The role of the gut in insect chilling injury: cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 214, 726–734 (2011). PubMed

MacMillan H. A. et al. Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance. J. Exp. Biol. 218, 423–432 (2015). PubMed

MacMillan H. A., Andersen J. L., Davies S. A. & Overgaard J. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci. Rep. 5, 18607 (2015). PubMed PMC

Loeb J. & Northrop J. H. On the influence of food and temperature upon the duration of life. J. Biol. Chem. 32, 103–121 (1917).

Bliss C. I. Temperature characteristics for prepupal development in Drosophila melanogaster. J. Gen. Physiol. 9, 467–495 (1927). PubMed PMC

Colinet H., Sinclair B. J., Vernon P. & Renault D. Insects at fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140 (2015). PubMed

Nedvěd O., Lavy D. & Verhoef H. A. Modelling the time–temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan. Funct. Ecol. 12, 816–824 (1998) c.

Honěk A. & Kocourek F. Temperature and development time in insects: A general relationship between thermal constants. Zool. Jb. Syst. 117, 401–439 (1990).

Koštál V., Renault D., Mehrabianová A. & Bastl J. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis. Comp. Biochem. Physiol. A 147, 231–238 (2007). PubMed

Zhang J., Marshall K., Westwood J. T., Clark M. S. & Sinclair B. J. Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. J. Exp. Biol. 214, 4021–4029 (2011). PubMed

Tollarová-Borovanská M., Lalouette L. & Koštál V. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: Role of 70 kDa heat shock protein expression. CryoLett. 30, 312–319 (2009). PubMed

Dolo V. H., Yi S. X. & Lee R. E. Jr. High temperature pulses decrease indirect chilling injury and elevate ATP levels in the flesh fly, Sarcophaga crassipalpis. Cryobiol. 60, 351–353 (2010). PubMed

Lalouette L., Williams C. M., Hervant F., Sinclair B. J. & Renault D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A 158, 229–234 (2011). PubMed

Lee R. E. Jr. A primer on insect cold-tolerance in Low Temperature Biology of Insects (eds Denlinger D. L. & Lee R. E. Jr.) 3–34 (Cambridge University Press, 2010).

Muldrew K., Acker J. P., Elliott J. A. V. & McGann L. E. The water to ice transition: Implications for living cells in Life in the Frozen State (eds Fuller B., Lane N. & Benson E. E.) 67–108 (CRC Press, 2004).

Privalov P. Cold denaturation of proteins. Crit. Rev. Biochem. Mol. Biol. 25, 281–305 (1990). PubMed

Tsai C.-J., Maizel J. V. & Nussinov R. The hydrophobic effect: A new insight from cold denaturation and two-state water structure. Crit. Rev. Biochem. Mol. Biol. 37, 55–69 (2002). PubMed

Drobnis E. Z. et al. Cold shock damage is due to lipid phase transition in cell membranes: a demonstration using sperm as a model. J. Exp. Zool. 265, 432–437 (1993). PubMed

Thompson S. N. Trehalose — the insect blood sugar. Adv. Insect Physiol. 31, 205–285 (2003).

Kocourek J. & Ballou C. E. Method for fingerprinting yeast cell wall mannans. J. Bacteriol. 100, 1175–1181 (1969). PubMed PMC

Rojas R. R. & Leopold R. A. Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiol. 33, 447–458 (1996).

Torson A. S., Yocum G. D., Rinehart J. P., Kemp W. P. & Browsher J. H. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata. J. Exp. Biol. 218, 1060–1068 (2015). PubMed

Aguila J. R., Suszko J., Gibbs A. G. & Hoshizaki D. K. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 210, 956–963 (2007). PubMed

Merkey A. B., Wong C. K., Hoshizaki D. K. & Gibbs A. G. Energetics of metamorphosis in Drosophila melanogaster. J. Insect Physiol. 57, 1437–1445 (2011). PubMed

Koštál V., Korbelová J., Poupardin R., Moos M. & Šimek P. Arginine and proline applied as food additives stimulate high freeze-tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. in press, doi: 10.1242/jeb.142158 (2016). PubMed DOI

Arakawa T. & Timasheff S. N. The stabilization of proteins by osmolytes. Biophys. J. 47, 411–41 (1985). PubMed PMC

Timasheff S. N. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. USA 99, 9721–9726 (2002). PubMed PMC

Storey K. B., Baust J. G. & Storey J. M. Intermediary metabolism during low temperature acclimation in the overwintering gall fly larva, Eurosta solidaginis. J. Comp. Physiol. 144, 183–190 (1981).

Morgan T. D. & Chippendale G. M. Free amino acids of the haemolymph of the southwestern corn borer and the european corn borer in relation to their diapause. J. Insect Physiol. 29, 735–740 (1983).

Fields P. G. et al. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferugineus (Coleoptera). J. Insect Physiol. 44, 995–968 (1998). PubMed

Dörfling K. et al. Heritable improvement of frost tolerance in winter wheat by in vitro selection of hydroxyproline-resistant proline overproducing mutants. Euphytica 93, 1–10 (1997).

Nanjo T. et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana.FEBS Lett. 461, 205–210 (1999). PubMed

Pullin A. S. Physiological relationships between insect diapause and cold tolerance: coevolution or coincidence? Eur. J. Entomol. 93, 121–129 (1996).

Koštál V., Yanagimoto M. & Bastl J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comp. Biochem. Physiol. B 143, 171–179 (2006). PubMed

Des Marteaux L. E. & Sinclair B. J. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure. J. Insect Physiol. 89, 19–27 (2016). PubMed

Boutilier R. G. Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol. 204, 3171–3181 (2001). PubMed

Zachariassen K. E., Kristiansen E. & Pedersen S. A. Inorganic ions in cold-hardiness. Cryobiol. 48, 126–133 (2004). PubMed

Lindsley D. L. & Grell E. H. Genetic variations of Drosophila melanogaster. Publs. Carnegie Instn. 627, 469 pp (1968).

Hušek P. & Šimek P. Advances in amino acid analysis. LC-GC North Am. 19, 986–999 (2001).

Dolédec S. & Chessel D. Recent developments in linear ordination methods for environmental sciences. Adv. Ecol. 1, 133–155 (1991).

Bolger A. M., Lohse M. & Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics btu170 (2014). PubMed PMC

Kim D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36. PubMed PMC

Trapnell C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol. 28, 511–515 (2010). PubMed PMC

Trapnell C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnol. 31, 46–53 (2013). PubMed PMC

Huang D. W., Sherman B. T. & Lempicki R. A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 4, 44–57 (2009). PubMed

Ponton F., Chapuis M. P., Pernice M., Sword G. A. & Simpson S. J. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J. Insect Physiol. 57, 840–850 (2011). PubMed

Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid. Res. 29, No. 9 00 (2001). PubMed PMC

Smith P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985). PubMed

Bueding E. & Orrell S. A. A mild procedure for the isolation of polydisperse glycogen from animal tissues. J. Biol. Chem. 239, 4018–4020 (1964). PubMed

Dubois M., Gilles A., Hamilthon J. J., Rebers P. A. & Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

Gessner M. O. & Neumann P. T. M. Total lipids in Methods to study litter decomposition: A practical guide (ed. Graça M. A. S., Bärlocher. F. & Gessner M. O.) 103–107 (Springer, 2005).

Folch A. J., Lees M. & Stanley G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957). PubMed

Koštál V., Urban T., Řimnáčová L., Berková P. & Šimek P. Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus. J. Insect Physiol. 59, 934–941 (2013). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...