Conversion of the chill susceptible fruit fly larva (Drosophila melanogaster) to a freeze tolerant organism
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22331891
PubMed Central
PMC3295325
DOI
10.1073/pnas.1119986109
PII: 1119986109
Knihovny.cz E-zdroje
- MeSH
- biologická proměna MeSH
- dieta MeSH
- Drosophila melanogaster účinky léků růst a vývoj fyziologie MeSH
- fyziologická adaptace MeSH
- kryoprotektivní látky farmakologie MeSH
- krystalizace MeSH
- larva MeSH
- led MeSH
- prolin farmakologie MeSH
- tělesná voda MeSH
- zmrazování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kryoprotektivní látky MeSH
- led MeSH
- prolin MeSH
Among vertebrates, only a few species of amphibians and reptiles tolerate the formation of ice crystals in their body fluids. Freeze tolerance is much more widespread in invertebrates, especially in overwintering insects. Evolutionary adaptations for freeze tolerance are considered to be highly complex. Here we show that surprisingly simple laboratory manipulations can change the chill susceptible insect to the freeze tolerant one. Larvae of Drosophila melanogaster, a fruit fly of tropical origin with a weak innate capacity to tolerate mild chilling, can survive when approximately 50% of their body water freezes. To achieve this goal, synergy of two fundamental prerequisites is required: (i) shutdown of larval development by exposing larvae to low temperatures (dormancy) and (ii) incorporating the free amino acid proline in tissues by feeding larvae a proline-augmented diet (cryopreservation).
Zobrazit více v PubMed
Throckmorton LH. The phylogeny, ecology, and geography of Drosophila. In: King RC, editor. Handbook of Genetics: Invertebrates of Genetic Interest. New York: Plenum; 1975. pp. 421–469.
Strachan LA, Tarnowski-Garner HE, Marshall KE, Sinclair BJ. The evolution of cold tolerance in Drosophila larvae. Physiol Biochem Zool. 2011;84:43–53. PubMed
Bale JS. Classes of insect cold hardiness. Funct Ecol. 1993;7:751–753.
Loeb J, Northrop JH. On the influence of food and temperature upon the duration of life. J Biol Chem. 1917;32:103–121.
Koštál V, et al. Long-term cold acclimation extends survival time at 0 °C and modifies the metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. PLoS ONE. 2011;6:e25025. PubMed PMC
Czajka MC, Lee RE. A rapid cold-hardening response protecting against cold shock injury in Drosophila melanogaster. J Exp Biol. 1990;148:245–254. PubMed
Huey RB. Evolutionary physiology of insect thermal adaptation to cold environments. In: Denlinger DL, Lee RE, editors. Low Temperature Biology of Insects. Cambridge: Cambridge University Press; 2010. pp. 223–241.
Danks HV. The wider integration of studies on insect cold hardiness. Eur J Entomol. 1996;93:383–403.
Lee RE. A primer on insect cold-tolerance. In: Denlinger DL, Lee RE, editors. Low Temperature Biology of Insects. Cambridge: Cambridge University Press; 2010. pp. 3–34.
Salt RW. Principles of insect cold-hardiness. Annu Rev Entomol. 1961;6:55–74.
Zachariassen KE. Physiology of cold tolerance in insects. Physiol Rev. 1985;65:799–832. PubMed
Storey KB, Storey JM. Freeze tolerance in animals. Physiol Rev. 1988;68:27–84. PubMed
Wharton DA, Ferns DJ. Survival of intracellular freezing by the antarctic nematode Panagrolaimus davidi. J Exp Biol. 1995;198:1381–1387. PubMed
Holmstrup M, Westh P. Dehydration of earthworm eocoons exposed to cold—a novel cold-hardiness mechanism. J Comp Physiol B. 1994;164:312–315.
Walters KR, Serrianni A, Sformo T, Barnes BM, Duman JG. A nonprotein thermal hysteresis-producing antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides. Proc Natl Acad Sci USA. 2009;106:20210–20215. PubMed PMC
Sformo T, et al. Deep supercooling, vitrification and limited survival to-100 degrees C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol. 2010;213:502–509. PubMed
Sinclair BJ, Addo-Bediako A, Chown SL. Climatic variability and the evolution of insect freeze tolerance. Biol Rev. 2003;78:181–195. PubMed
Sinclair BJ, Chown SL. Climatic variability and hemispheric differences in insect cold tolerance: support from South Africa. Funct Ecol. 2005;19:214–221.
Moon I, Fujikawa S, Shimada K. Cryopreservation of Chymomyza larvae (Diptera: Drosophilidae) at -196 °C with extracellular freezing. CryoLetters. 1996;17:105–110.
Koštál V, Zahradníčková H, Šimek P. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc Natl Acad Sci USA. 2011;108:13035–13040. PubMed PMC
Saunders DS, Henrich VC, Gilbert LI. Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc Natl Acad Sci USA. 1989;86:3748–3752. PubMed PMC
Schmidt PS, Paaby AB. Reproductive diapause and life-history clines in North american populations of Drosophila melanogaster. Evolution. 2008;62:1204–1215. PubMed
Nedvěd O, Lavy D, Verhoef HA. Modelling time-temperature relationship in cold injury and effect of high temperature interruptions on survival in a chill sensitive collembolan. Funct Ecol. 1998;12:816–824.
Koštál V, Renault D, Mehrabianová A, Bastl J. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: role of ion homeostasis. Comp Biochem Phys A. 2007;147:231–238. PubMed
Colinet H. Disruption of ATP homeostasis during chronic stress and recovery in the chill susceptible beetle (Alphitobius diapaerinus) Comp Biochem Phy A. 2011;160:63–67. PubMed
Sömme L. Supercooling and winter survival in terrestrial arthropods. Comp Biochem Phys A. 1982;73:519–543.
Adams E, Frank L. Metabolism of proline and hydroxyprolines. Annu Rev Biochem. 1980;49:1005–1061. PubMed
Phang JM, Donald SP, Pandhare J, Liu Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids. 2008;35:681–690. PubMed
Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science. 1982;217:1214–1222. PubMed
Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208:2819–2830. PubMed
Storey KB, Baust JG, Buescher P. Determination of water “bound” by soluble subcellular components during low temperature acclimation of the overwintering gall fly larva, Eurosta solidaginis. Cryobiology. 1981;18:315–321. PubMed
Arakawa T, Timasheff SN. Preferential interactions of proteins with solvent components in aquaeous amino acid solutions. Arch Biochem Biophys. 1983;224:169–177. PubMed
Carpenter JF, Crowe JH. The mechanisms of cryoprotection of proteins by solutes. Cryobiology. 1988;25:244–255. PubMed
Rudolph AS, Crowe JH, Crowe LM. Effects of three stabilizing agents—proline, betaine, and trehalose—on membrane phospholipids. Arch Biochem Biophys. 1986;245:134–143. PubMed
Anchordoguy T, Carpenter JF, Loomis SH, Crowe JH. Mechanisms of interaction of amino acids with phospholipid bilayers during freezing. BBA—Biomembranes. 1988;946:299–306. PubMed
Insect cross-tolerance to freezing and drought stress: role of metabolic rearrangement
Chiral secondary amino acids, their importance, and methods of analysis
1H NMR Profiling of Honey Bee Bodies Revealed Metabolic Differences between Summer and Winter Bees
Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect
Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella)