Piezoresponse, Mechanical, and Electrical Characteristics of Synthetic Spider Silk Nanofibers

. 2018 Aug 01 ; 8 (8) : . [epub] 20180801

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30071581

This work presents electrospun nanofibers from synthetic spider silk protein, and their application as both a mechanical vibration and humidity sensor. Spider silk solution was synthesized from minor ampullate silk protein (MaSp) and then electrospun into nanofibers with a mean diameter of less than 100 nm. Then, mechanical vibrations were detected through piezoelectric characteristics analysis using a piezo force microscope and a dynamic mechanical analyzer with a voltage probe. The piezoelectric coefficient (d33) was determined to be 3.62 pC/N. During humidity sensing, both mechanical and electric resistance properties of spider silk nanofibers were evaluated at varying high-level humidity, beyond a relative humidity of 70%. The mechanical characterizations of the nanofibers show promising results, with Young's modulus and maximum strain of up to 4.32 MPa and 40.90%, respectively. One more interesting feature is the electric resistivity of the spider silk nanofibers, which were observed to be decaying with humidity over time, showing a cyclic effect in both the absence and presence of humidity due to the cyclic shrinkage/expansion of the protein chains. The synthesized nanocomposite can be useful for further biomedical applications, such as nerve cell regrowth and drug delivery.

Zobrazit více v PubMed

Vollrath F., Knight D.P. Liquid crystalline spinning of spider silk. Nature. 2001;410:541–548. doi: 10.1038/35069000. PubMed DOI

Bourzac K. Spiders: Web of intrigue. Nature. 2015;519:S4–S6. doi: 10.1038/519S4a. PubMed DOI

Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials. Rev. Prog. Polym. Sci. 2011;36:1254–1276. doi: 10.1016/j.progpolymsci.2011.05.003. DOI

Lucas F. Spiders and their silk. Discovery. 1964;25:20–26.

Vollrath F. Spider webs and silks. Sci. Am. 1992;266:70–76. doi: 10.1038/scientificamerican0392-70. DOI

Zhou L., Fu P., Cai X., Zhou S., Yuan Y. Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: A new application of spider silk. Appl. Catal. B Environ. 2016;188:31–38. doi: 10.1016/j.apcatb.2016.01.063. DOI

Yu Q., Xu S., Zhang H., Gu L., Xu Y., Ko F. Structure–property relationship of regenerated spider silk protein nano/microfibrous scaffold fabricated by electrospinning. J. Biomed. Mater. Res. 2014;102:3828–3837. doi: 10.1002/jbm.a.35051. PubMed DOI

Steins A., Dik P., Müller W.H., Vervoort S.J., Reimers K., Kuhbier J.W., Vogt P.M., van Apeldoorn A.A., Coffer P.J., Schepers K. In vitro evaluation of spider silk meshes as a potential biomaterial for bladder reconstruction. PLoS ONE. 2015;10:0145240. doi: 10.1371/journal.pone.0145240. PubMed DOI PMC

Stauffer S., Cougill S., Lewis R.V. Mechanical properties of several spider silks. J. Arachnol. 1994;22:5–11.

Copeland C., Bell B., Christensen C., Lewis R. About development of a process for the spinning of synthetic spider silk. ACS Biomater. Sci. Eng. 2015;1:577–584. doi: 10.1021/acsbiomaterials.5b00092. PubMed DOI PMC

Munro R., Putzeys T., Copeland C., Xing C., Lewis R., Ban H., Glorieux C., Wubbenhorst M. Investigation of Synthetic Spider Silk Crystallinity and Alignment via Electrothermal, Pyroelectric, Literature XRD, and Tensile Techniques. Macromol. Mater. Eng. 2017;302:1600480. doi: 10.1002/mame.201600480. PubMed DOI PMC

Hinman M.B., Lewis R.V. Isolation of a clone encoding a second dragline silk fibroin. J. Biol. Chem. 1992;267:19320–19324. PubMed

Colgin M., Lewis R.V. Spider Minor Ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “Spacer Regions”. Protein Sci. 1998;7:667–672. doi: 10.1002/pro.5560070315. PubMed DOI PMC

Jin H.J., Kaplan D.L. Mechanism of silk processing in insects and spiders. Nature. 2003;424:1057–1061. doi: 10.1038/nature01809. PubMed DOI

Keten S., Xu Z., Ihle B., Buehler M.J. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 2010;9:359–367. doi: 10.1038/nmat2704. PubMed DOI

Porter D., Vollrath F., Shao Z. Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E. 2005;16:199–206. doi: 10.1140/epje/e2005-00021-2. PubMed DOI

Yang Z., Zhou S., Zu J., Inman D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule. 2018;2:642–697. doi: 10.1016/j.joule.2018.03.011. DOI

Ando Y., Okano R., Nishida K., Miyata S., Fukada E. Piezoelectric and related properties of hydrated silk fibroin. Rep. Prog. Polym. Phys. Jpn. 1980;23:775.

Jucel T., Cebe P., Caplan D.L. Structural Origins of silk piezoelectricity. Adv. Func. Mater. 2011;21:779–785. PubMed PMC

Staworko M., Uhl T. Modeling and Simulation of Piezoelectric Elements-Comparison of Avaialable Methods and Tools Summary. Mechanics. 2008;27:161–171.

Huang L., Bui N.-N., Manickam S.S., McCutcheon J.R. Controlling Electrospun Nanofiber Morphology and Mechanical Properties Using Humidity. Polym. Phys. 2011;49:1734–1744. doi: 10.1002/polb.22371. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...