Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
QUHI-CENG-18/19-1
Qatar University
PubMed
31906164
PubMed Central
PMC7022566
DOI
10.3390/nano10010077
PII: nano10010077
Knihovny.cz E-resources
- Keywords
- PBMA, PVDF-co-HFP, elastomers, graphene oxide, light-induced actuation, sensing,
- Publication type
- Journal Article MeSH
This article is focused on the facile procedure for 2D graphene oxide (GO) fabrication, utilizing reversible de-activation polymerization approach and therefore enhanced compatibility with surrounding polymer matrix. Such tunable improvement led to a controllable sensing response after irradiation with light. The neat GO as well as surface initiated atom transfer radical polymerization (SI-ATRP) grafted particles were investigated by atomic force microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. To confirm the successful surface reduction, X-ray photoelectron spectroscopy and Raman spectroscopy was utilized. The composites in form of non-woven fiber mats containing ungrafted GO and controllably grafted GO with compact layer of polymer dispersed in poly(vinylidene-co-hexafluoropropylene) were prepared by electrospinning technique and characterized by scanning electron microscopy. Mechanical performance was characterized using dynamic mechanical analysis. Thermal conductivity was employed to confirm that the conducting filler was well-dispersed in the polymer matrix. The presented controllable coating with polymer layer and its impact on the overall performance, especially photo-actuation and subsequent contraction of the material aiming on the sensing applications, was discussed.
See more in PubMed
Ilcikova M., Mrlik M., Babayan V., Kasak P. Graphene oxide modified by betaine moieties for improvement of electrorheological performance. RSC Adv. 2015;5:57820–57827. doi: 10.1039/C5RA08403B. DOI
Kutalkova E., Mrlik M., Ilcikova M., Osicka J., Sedlacik M., Mosnacek J. Enhanced and tunable electrorheological capability using surface initiated atom transfer radical polymerization modification with simultaneous reduction of the graphene oxide by silyl-based polymer grafting. Nanomaterials. 2019;9:308. doi: 10.3390/nano9020308. PubMed DOI PMC
Mrlik M., Ilcikova M., Plachy T., Pavlinek V., Spitalsky Z., Mosnacek J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016;283:717–720. doi: 10.1016/j.cej.2015.08.013. DOI
Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Babayan V., Kucekova Z., Humpolicek P., Pavlinek V. The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly(glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv. 2015;5:72816–72824. doi: 10.1039/C5RA11968E. DOI
Cvek M., Mrlik M., Ilcikova M., Mosnacek J., Munster L., Pavlinek V. Synthesis of silicone elastomers containing silyl-based polymer grafted carbonyl iron particles: an efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI
Lubtow M.M., Mrlik M., Hahn L., Altmann A., Beudert M., Luhmann T., Luxenhofer R. Temperature-dependent rheological and viscoelastic investigation of a poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-meth yl-2-oxazoline)-based thermogelling hydrogel. J. Funct. Biomater. 2019;10:36. doi: 10.3390/jfb10030036. PubMed DOI PMC
Zahoranova A., Mrlik M., Tomanova K., Kronek J., Luxenhofer R. ABA and BAB Triblock Copolymers Based on 2-Methyl-2-oxazoline and 2-n-Propyl-2-oxazoline: Synthesis and Thermoresponsive Behavior in Water. Macromol. Chem. Phys. 2017;218:1700031. doi: 10.1002/macp.201700031. DOI
Antoniraj M.G., Kumar C.S., Kumari H.L.J., Natesan S., Kandasamy R. Atrial natriuretic peptide-conjugated chitosan-hydrazone-mPEG copolymer nanoparticles as pH-responsive carriers for intracellular delivery of prednisone. Carbohydr. Polym. 2017;157:1677–1686. doi: 10.1016/j.carbpol.2016.11.049. PubMed DOI
Mrlík M., Špírek M., Al-Khori J., Ahmad A.A., Mosnaček J., AlMaadeed M.A., Kasák P. Mussel-mimicking sulfobetaine-based copolymer with metal tunable gelation, self-healing and antibacterial capability. Arab. J. Chem. 2017 doi: 10.1016/j.arabjc.2017.03.009. DOI
Ilcikova M., Mrlik M., Sedlacek T., Doroshenko M., Koynov K., Danko M., Mosnacek J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer. 2015;72:368–377. doi: 10.1016/j.polymer.2015.03.060. DOI
Osicka J., Ilcikova M., Mrlik M., Minarik A., Pavlinek V., Mosnacek J. The impact of polymer grafting from a graphene oxide surface on its compatibility with a pdms matrix and the light-induced actuation of the composites. Polymers. 2017;9:264. doi: 10.3390/polym9070264. PubMed DOI PMC
Koerner H., Price G., Pearce N.A., Alexander M., Vaia R.A. Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 2004;3:115–120. doi: 10.1038/nmat1059. PubMed DOI
Bian K., Liu H.G., Tai G.A., Zhu K.J., Xiong K. Enhanced actuation response of nafion-based ionic polymer metal composites by doping batio3 nanoparticles. J. Phys. Chem. C. 2016;120:12377–12384. doi: 10.1021/acs.jpcc.6b03273. DOI
Wie J.J., Wang D.H., Tondiglia V.P., Tabiryan N.V., Vergara-Toloza R.O., Tan L.S., White T.J. Photopiezoelectric composites of azobenzene-functionalized polyimides and polyvinylidene fluoride. Macromol. Rapid Commun. 2014;35:2050–2056. doi: 10.1002/marc.201400455. PubMed DOI
Czanikova K., Torras N., Esteve J., Krupa I., Kasak P., Pavlova E., Racko D., Chodak I., Omastova M. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes. Sens. Actuator B Chem. 2013;186:701–710. doi: 10.1016/j.snb.2013.06.054. DOI
Yang M.J., Yuan Z.K., Liu J., Fang Z.S., Fang L., Yu D.S., Li Q. Photoresponsive Actuators Built from Carbon-Based Soft Materials. Adv. Opt. Mater. 2019;7:1900069. doi: 10.1002/adom.201900069. DOI
Punetha V.D., Ha Y.M., Kim Y.O., Jung Y.C., Cho J.W. Interaction of photothermal graphene networks with polymer chains and laser-driven photo-actuation behavior of shape memory polyurethane/epoxy/epoxy-functionalized graphene oxide nanocomposites. Polymer. 2019;181:121791. doi: 10.1016/j.polymer.2019.121791. DOI
Ansari S., Rahima C., Muralidharan M.N. Photomechanical characteristics of thermally reduced graphene oxide-polydimethylsiloxane nanocomposites. Polym-Plast. Technol. Eng. 2013;52:1604–1610. doi: 10.1080/03602559.2013.828232. DOI
Osicka J., Mrlik M., Ilcikova M., Munster L., Bazant P., Spitalsky Z., Mosnacek J. Light-induced actuation of poly(dimethylsiloxane) filled with graphene oxide grafted with poly(2-(trimethylsilyloxy)ethyl methacrylate) Polymers. 2018;10:1059. doi: 10.3390/polym10101059. PubMed DOI PMC
Sun S.D., Liang S.F., Xu W.C., Xu G.F., Wu S. Photoresponsive polymers with multi-azobenzene groups. Polym. Chem. 2019;10:4389–4401. doi: 10.1039/C9PY00793H. DOI
Garcia-Amoros J., Stopa G., Stochel G., van Eldik R., Martinez M., Velasco D. Activation volumes for cis-to-trans isomerisation reactions of azophenols: a clear mechanistic indicator? Phys. Chem. Chem. Phys. 2018;20:1286–1292. doi: 10.1039/C7CP07349F. PubMed DOI
Hu Y., Li Z., Lan T., Chen W. Photoactuators for direct optical-to-mechanical energy conversion: from nanocomponent assembly to macroscopic deformation. Adv. Mater. 2016;28:10548–10556. doi: 10.1002/adma.201602685. PubMed DOI
Hu Y., Wu G., Lan T., Zhao J.J., Liu Y., Chen W. A graphene-based bimorph structure for design of high performance photoactuators. Adv. Mater. 2015;27:7867–7873. doi: 10.1002/adma.201502777. PubMed DOI
Yang Y.K., Zhan W.J., Peng R.G., He C.G., Pang X.C., Shi D., Jiang T., Lin Z.Q. Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv. Mater. 2015;27:6376–6381. doi: 10.1002/adma.201503680. PubMed DOI
Wani O.M., Zeng H., Wasylczyk P., Priimagi A. programming photoresponse in liquid crystal polymer actuators with laser projector. Adv. Opt. Mater. 2018;6:1700949. doi: 10.1002/adom.201700949. DOI
Rogoz M., Dradrach K., Xuan C., Wasylczyk P. A millimeter-scale snail robot based on a light-powered liquid crystal elastomer continuous actuator. Macromol. Rapid Commun. 2019;40:1900279. doi: 10.1002/marc.201900279. PubMed DOI
Ahir S.V., Terentjev E.M. Photomechanical actuation in polymer-nanotube composites. Nat. Mater. 2005;4:491–495. doi: 10.1038/nmat1391. PubMed DOI
Loomis J., King B., Burkhead T., Xu P., Bessler N., Terentjev E., Panchapakesan B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology. 2012;23:045501. doi: 10.1088/0957-4484/23/4/045501. PubMed DOI
Ilcikova M., Mrlik M., Sedlacek T., Chorvat D., Krupa I., Slouf M., Koynov K., Mosnacek J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer. 2014;55:211–218. doi: 10.1016/j.polymer.2013.11.031. DOI
Ilcikova M., Mrlik M., Sedlacek T., Slouf M., Zhigunov A., Koynov K., Mosnacek J. Synthesis of photoactuating acrylic thermoplastic elastomers containing diblock copolymer-grafted carbon nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI
Torras N., Zinoviev K.E., Camargo C.J., Campo E.M., Campanella H., Esteve J., Marshall J.E., Terentjev E.M., Omastova M., Krupa I., et al. Tactile device based on opto-mechanical actuation of liquid crystal elastomers. Sens. Actuator A Phys. 2014;208:104–112. doi: 10.1016/j.sna.2014.01.012. DOI
Raturi P., Singh J.P. Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators. Sci. Rep. 2018;8:3687. doi: 10.1038/s41598-018-21871-3. PubMed DOI PMC
Zeng H., Wani O.M., Wasylczyk P., Priimagi A. Light-driven, caterpillar-inspired miniature inching robot. Macromol. Rapid Commun. 2018;39:1700224. doi: 10.1002/marc.201700224. PubMed DOI
Issa A.A., Al-Maadeed M.A.S., Mrlik M., Luyt A.S. Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties. J. Polym. Res. 2016;23:13. doi: 10.1007/s10965-016-1126-y. DOI
Issa A.A., Al-Maadeed M., Luyt A.S., Mrlik M., Hassan M.K. Investigation of the physico-mechanical properties of electrospun PVDF/cellulose (nano) fibers. J. Appl. Polym. Sci. 2016;133:12. doi: 10.1002/app.43594. DOI
Shehata N., Kandas I., Hassounah I., Sobolciak P., Krupa I., Mrlik M., Popelka A., Steadman J., Lewis R. Piezoresponse, mechanical, and electrical characteristics of synthetic spider silk nanofibers. Nanomaterials. 2018;8:585. doi: 10.3390/nano8080585. PubMed DOI PMC
Parangusan H., Ponnamma D., Al-Maadeed M.A. Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators. Sci. Rep. 2018;8:754. doi: 10.1038/s41598-017-19082-3. PubMed DOI PMC
Shao H., Fang J., Wang H.X., Lin T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv. 2015;5:14345–14350. doi: 10.1039/C4RA16360E. DOI
Florczak S., Lorson T., Zheng T., Mrlik M., Hutmacher D.W., Higgins M.J., Luxenhofer R., Dalton P.D. Melt electrowriting of electroactive poly(vinylidene difluoride) fibers. Polym. Int. 2019;68:735–745. doi: 10.1002/pi.5759. DOI
Zhang R., Deng H., Valenca R., Jin J.H., Fu Q., Bilotti E., Peijs T. Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos. Sci. Technol. 2013;74:1–5. doi: 10.1016/j.compscitech.2012.09.016. DOI
Flandin L., Chang A., Nazarenko S., Hiltner A., Baer E. Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers. J. Appl. Polym. Sci. 2000;76:894–905. doi: 10.1002/(SICI)1097-4628(20000509)76:6<894::AID-APP16>3.0.CO;2-K. DOI
Ilcikova M., Mrlik M., Spitalsky Z., Micusik M., Csomorova K., Sasinkova V., Kleinova A., Mosnacek J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. catalysis of atom transfer radical polymerization. RSC Adv. 2015;5:3370–3376. doi: 10.1039/C4RA12915F. DOI
Osicka J., Mrlik M., Ilcikova M., Hanulikova B., Urbanek P., Sedlacik M., Mosnacek J. Reversible actuation ability upon light stimulation of the smart systems with controllably grafted graphene oxide with poly(glycidyl methacrylate) and pdms elastomer: Effect of compatibility and graphene oxide reduction on the photo-actuation performance. Polymers. 2018;10:832. doi: 10.3390/polym10080832. PubMed DOI PMC
Lerf A., He H.Y., Forster M., Klinowski J. Structure of graphite oxide revisited. J. Phys. Chem. B. 1998;102:4477–4482. doi: 10.1021/jp9731821. DOI
Feng Y.Y., Qin M.M., Guo H.Q., Yoshino K., Feng W. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density. ACS Appl. Mater. Interfaces. 2013;5:10882–10888. doi: 10.1021/am403071k. PubMed DOI