Enhanced and Tunable Electrorheological Capability using Surface Initiated Atom Transfer Radical Polymerization Modification with Simultaneous Reduction of the Graphene Oxide by Silyl-Based Polymer Grafting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-20361Y
Grantová Agentura České Republiky
LO 1504
Ministerstvo Školství, Mládeže a Tělovýchovy
14-0891
Agentúra na Podporu Výskumu a Vývoja
15-0545
Agentúra na Podporu Výskumu a Vývoja
CZ.02.2.69/0.0/0.0/16_027/0008464
Operational Program for Research, Development and Education, co-funded by the European Union, within the framework of project "International Mobility of Researchers of TBU in Zlín"
UMO-2016/23/P/ST5/02131
Narodowe Centrum Nauki
665778
Marie Sklodowska-Curie
PubMed
30813501
PubMed Central
PMC6410254
DOI
10.3390/nano9020308
PII: nano9020308
Knihovny.cz E-zdroje
- Klíčová slova
- (2-(trimethylsilyloxy)ethyl methacrylate), electrorheology, SI-ATRP, graphene oxide, reduction,
- Publikační typ
- časopisecké články MeSH
In this study, a verified process of the "grafting from" approach using surface initiated atom transfer radical polymerization was applied for the modification of a graphene oxide (GO) surface. This approach provides simultaneous grafting of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains and a controllable reduction of the GO surface. This allows the fine tuning of its electrical conductivity, which is a crucial parameter for applications of such hybrid composite particles in electrorheological (ER) suspensions. The successful coating was confirmed by transmission electron microscopy and Fourier-transform infrared spectroscopy. The molecular characteristics of PHEMATMS were characterized by gel permeation chromatography. ER performance was elucidated using a rotational rheometer under various electric field strengths and a dielectric spectroscopy to demonstrate the direct impact of both the relaxation time and dielectric relaxation strength on the ER effectivity. Enhanced compatibility between the silicone oil and polymer-modified GO particles was investigated using contact angle measurements and visual sedimentation stability determination. It was clearly proven that the modification of the GO surface improved the ER capability of the system due to the tunable conductivity during the surface-initiated atom transfer radical polymerization (SI-ATRP) process and the enhanced compatibility of the GO particles, modified by polymer containing silyl structures, with silicone oil. These unique ER properties of this system appear very promising for future applications in the design of ER suspensions.
Zobrazit více v PubMed
Jiang J.L., Tian Y., Meng Y.G. Structure Parameter of Electrorheological Fluids in Shear Flow. Langmuir. 2011;27:5814–5823. doi: 10.1021/la2002018. PubMed DOI
Stejskal J., Mrlik M., Plachy T., Trchova M., Kovarova J., Li Y. Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology. React. Funct. Polym. 2017;120:30–37. doi: 10.1016/j.reactfunctpolym.2017.09.004. DOI
Mrlik M., Cvek M., Osicka J., Moucka R., Sedlacik M., Pavlinek V. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Mater. Lett. 2018;211:138–141. doi: 10.1016/j.matlet.2017.09.107. DOI
Plachy T., Sedlacik M., Pavlinek V., Trchova M., Moravkova Z., Stejskal J. Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology. Chem. Eng. J. 2014;256:398–406. doi: 10.1016/j.cej.2014.07.010. DOI
Plachy T., Mrlik M., Kozakova Z., Suly P., Sedlacik M., Pavlinek V., Kuritka I. The Electrorheological Behavior of Suspensions Based on Molten-Salt Synthesized Lithium Titanate Nanoparticles and Their Core-Shell Titanate/Urea Analogues. ACS Appl. Mater. Interfaces. 2015;7:3725–3731. doi: 10.1021/am508471f. PubMed DOI
Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109–162. doi: 10.1103/RevModPhys.81.109. DOI
Marconcini P., Macucci M. The k center dot p method and its application to graphene, carbon nanotubes and graphene nanoribbons: The Dirac equation. Riv. Nuovo Cimento. 2011;34:489–584.
Kuila T., Bose S., Mishra A.K., Khanra P., Kim N.H., Lee J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012;57:1061–1105. doi: 10.1016/j.pmatsci.2012.03.002. DOI
Mrlik M., Ilcikova M., Plachy T., Pavlinek V., Spitalsky Z., Mosnacek J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016;283:717–720. doi: 10.1016/j.cej.2015.08.013. DOI
Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011;56:1178–1271. doi: 10.1016/j.pmatsci.2011.03.003. DOI
Schniepp H.C., Li J.L., McAllister M.J., Sai H., Herrera-Alonso M., Adamson D.H., Prud’homme R.K., Car R., Saville D.A., Aksay I.A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 2006;110:8535–8539. doi: 10.1021/jp060936f. PubMed DOI
Mianehrow H., Moghadam M.H.M., Sharif F., Mazinani S. Graphene-oxide stabilization in electrolyte solutions using hydroxyethyl cellulose for drug delivery application. Int. J. Pharm. 2015;484:276–282. doi: 10.1016/j.ijpharm.2015.02.069. PubMed DOI
Lonkar S.P., Deshmukh Y.S., Abdala A.A. Recent advances in chemical modifications of graphene. Nano Res. 2015;8:1039–1074. doi: 10.1007/s12274-014-0622-9. DOI
Zhang W.L., Liu Y.D., Choi H.J., Kim S.G. Electrorheology of Graphene Oxide. ACS Appl. Mater. Interfaces. 2012;4:2267–2272. doi: 10.1021/am300267f. PubMed DOI
Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI
Zhang W.L., Choi H.J. Graphene oxide based smart fluids. Soft Matter. 2014;10:6601–6608. doi: 10.1039/C4SM01151A. PubMed DOI
Hui C.M., Pietrasik J., Schmitt M., Mahoney C., Choi J., Bockstaller M.R., Matyjaszewski K. Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. Chem. Mat. 2014;26:745–762. doi: 10.1021/cm4023634. DOI
Hwang B., Lee J.S. Recent Advances in Memory Devices with Hybrid Materials. Adv. Electron. Mater. 2019;5:22. doi: 10.1002/aelm.201800519. DOI
Zhang X., Zhang J.Y., Chen Y., Cheng K., Yan J., Zhu K., Ye K., Wang G.L., Zhou L.M., Cao D.X. Freestanding 3D Polypyrrole@reduced graphene oxide hydrogels as binder-free electrode materials for flexible asymmetric supercapacitors. J. Colloid Interface Sci. 2019;536:291–299. doi: 10.1016/j.jcis.2018.10.044. PubMed DOI
Wang X.D., Yu K.X., An R., Han L.L., Zhang Y.L., Shi L.Y., Ran R. Self-assembling GO/modified HEC hybrid stabilized pickering emulsions and template polymerization for biomedical hydrogels. Carbohydr. Polym. 2019;207:694–703. doi: 10.1016/j.carbpol.2018.12.034. PubMed DOI
Osicka J., Ilcikova M., Mrlik M., Minarik A., Pavlinek V., Mosnacek J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers. 2017;9:14. doi: 10.3390/polym9070264. PubMed DOI PMC
Yin J.B., Wang X.X., Chang R.T., Zhao X.P. Polyaniline decorated graphene sheet suspension with enhanced electrorheology. Soft Matter. 2012;8:294–297. doi: 10.1039/C1SM06728A. DOI
Yin J.B., Chang R.T., Shui Y.J., Zhao X.P. Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions. Soft Matter. 2013;9:7468–7478. doi: 10.1039/c3sm51128f. DOI
Li Y.Z., Guan Y.Q., Liu Y., Yin J.B., Zhao X.P. Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior. Nanotechnology. 2016;27:11. doi: 10.1088/0957-4484/27/19/195702. PubMed DOI
Mrlik M., Ilcikova M., Plachy T., Moucka R., Pavlinek V., Mosnacek J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate) J. Ind. Eng. Chem. 2018;57:104–112. doi: 10.1016/j.jiec.2017.08.013. DOI
Ilcikova M., Mrlik M., Spitalsky Z., Micusik M., Csomorova K., Sasinkova V., Kleinova A., Mosnacek J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. catalysis of atom transfer radical polymerization. RSC Adv. 2015;5:3370–3376. doi: 10.1039/C4RA12915F. DOI
Zhang W.L., Park B.J., Choi H.J. Colloidal graphene oxide/polyaniline nanocomposites and its electrorheology. Chem. Commun. 2010;46:5596–5598. doi: 10.1039/c0cc00557f. PubMed DOI
Plachy T., Sedlacik M., Pavlinek V., Stejskal J., Graca M.P., Costa L.C. Temperature-dependent electrorheological effect and its description with respect to dielectric spectra. J. Intell. Mater. Syst. Struct. 2016;27:880–886. doi: 10.1177/1045389X15600801. DOI
Plachy T., Sedlacik M., Pavlinek V., Stejskal J. The observation of a conductivity threshold on the electrorheological effect of p-phenylenediamine oxidized with p-benzoquinone. J. Mater. Chem. C. 2015;3:9973–9980. doi: 10.1039/C5TC02119G. DOI
Sedlacik M., Pavlinek V. A tensiometric study of magnetorheological suspensions’ stability. RSC Adv. 2014;4:58377–58385. doi: 10.1039/C4RA11842A. DOI
Hong J.Y., Lee E., Jang J. Electro-responsive and dielectric characteristics of graphene sheets decorated with TiO2 nanorods. J. Mater. Chem. A. 2013;1:117–121. doi: 10.1039/C2TA00286H. DOI
Hu H.T., Wang X.B., Wang J.C., Liu F.M., Zhang M., Xu C.H. Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 2011;257:2637–2642. doi: 10.1016/j.apsusc.2010.10.035. DOI
Ilcikova M., Mrlik M., Babayan V., Kasak P. Graphene oxide modified by betaine moieties for improvement of electrorheological performance. RSC Adv. 2015;5:57820–57827. doi: 10.1039/C5RA08403B. DOI
Chen P., Cheng Q., Wang L.M., Liu Y.D., Choi H.J. Fabrication of dual-coated graphene oxide nanosheets by polypyrrole and poly (ionic liquid) and their enhanced electrorheological responses. J. Ind. Eng. Chem. 2019;69:106–115. doi: 10.1016/j.jiec.2018.09.022. DOI
Davis L.C. Time-dependent and nonlinear effects in electrorheological fluids. J. Appl. Phys. 1997;81:1985–1991. doi: 10.1063/1.364231. DOI
Zhang K., Liu Y.D., Jhon M.S., Choi H.J. Generalized yield stress equation for electrorheological fluids. J. Colloid Interface Sci. 2013;409:259–263. doi: 10.1016/j.jcis.2013.08.003. PubMed DOI
Moucka R., Sedlacik M., Cvek M. Dielectric properties of magnetorheological elastomers with different microstructure. Appl. Phys. Lett. 2018;112:4. doi: 10.1063/1.5021750. DOI
Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability