• This record comes from PubMed

Enhanced and Tunable Electrorheological Capability using Surface Initiated Atom Transfer Radical Polymerization Modification with Simultaneous Reduction of the Graphene Oxide by Silyl-Based Polymer Grafting

. 2019 Feb 24 ; 9 (2) : . [epub] 20190224

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
16-20361Y Grantová Agentura České Republiky
LO 1504 Ministerstvo Školství, Mládeže a Tělovýchovy
14-0891 Agentúra na Podporu Výskumu a Vývoja
15-0545 Agentúra na Podporu Výskumu a Vývoja
CZ.02.2.69/0.0/0.0/16_027/0008464 Operational Program for Research, Development and Education, co-funded by the European Union, within the framework of project "International Mobility of Researchers of TBU in Zlín"
UMO-2016/23/P/ST5/02131 Narodowe Centrum Nauki
665778 Marie Sklodowska-Curie

In this study, a verified process of the "grafting from" approach using surface initiated atom transfer radical polymerization was applied for the modification of a graphene oxide (GO) surface. This approach provides simultaneous grafting of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS) chains and a controllable reduction of the GO surface. This allows the fine tuning of its electrical conductivity, which is a crucial parameter for applications of such hybrid composite particles in electrorheological (ER) suspensions. The successful coating was confirmed by transmission electron microscopy and Fourier-transform infrared spectroscopy. The molecular characteristics of PHEMATMS were characterized by gel permeation chromatography. ER performance was elucidated using a rotational rheometer under various electric field strengths and a dielectric spectroscopy to demonstrate the direct impact of both the relaxation time and dielectric relaxation strength on the ER effectivity. Enhanced compatibility between the silicone oil and polymer-modified GO particles was investigated using contact angle measurements and visual sedimentation stability determination. It was clearly proven that the modification of the GO surface improved the ER capability of the system due to the tunable conductivity during the surface-initiated atom transfer radical polymerization (SI-ATRP) process and the enhanced compatibility of the GO particles, modified by polymer containing silyl structures, with silicone oil. These unique ER properties of this system appear very promising for future applications in the design of ER suspensions.

See more in PubMed

Jiang J.L., Tian Y., Meng Y.G. Structure Parameter of Electrorheological Fluids in Shear Flow. Langmuir. 2011;27:5814–5823. doi: 10.1021/la2002018. PubMed DOI

Stejskal J., Mrlik M., Plachy T., Trchova M., Kovarova J., Li Y. Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology. React. Funct. Polym. 2017;120:30–37. doi: 10.1016/j.reactfunctpolym.2017.09.004. DOI

Mrlik M., Cvek M., Osicka J., Moucka R., Sedlacik M., Pavlinek V. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Mater. Lett. 2018;211:138–141. doi: 10.1016/j.matlet.2017.09.107. DOI

Plachy T., Sedlacik M., Pavlinek V., Trchova M., Moravkova Z., Stejskal J. Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology. Chem. Eng. J. 2014;256:398–406. doi: 10.1016/j.cej.2014.07.010. DOI

Plachy T., Mrlik M., Kozakova Z., Suly P., Sedlacik M., Pavlinek V., Kuritka I. The Electrorheological Behavior of Suspensions Based on Molten-Salt Synthesized Lithium Titanate Nanoparticles and Their Core-Shell Titanate/Urea Analogues. ACS Appl. Mater. Interfaces. 2015;7:3725–3731. doi: 10.1021/am508471f. PubMed DOI

Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109–162. doi: 10.1103/RevModPhys.81.109. DOI

Marconcini P., Macucci M. The k center dot p method and its application to graphene, carbon nanotubes and graphene nanoribbons: The Dirac equation. Riv. Nuovo Cimento. 2011;34:489–584.

Kuila T., Bose S., Mishra A.K., Khanra P., Kim N.H., Lee J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012;57:1061–1105. doi: 10.1016/j.pmatsci.2012.03.002. DOI

Mrlik M., Ilcikova M., Plachy T., Pavlinek V., Spitalsky Z., Mosnacek J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016;283:717–720. doi: 10.1016/j.cej.2015.08.013. DOI

Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011;56:1178–1271. doi: 10.1016/j.pmatsci.2011.03.003. DOI

Schniepp H.C., Li J.L., McAllister M.J., Sai H., Herrera-Alonso M., Adamson D.H., Prud’homme R.K., Car R., Saville D.A., Aksay I.A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 2006;110:8535–8539. doi: 10.1021/jp060936f. PubMed DOI

Mianehrow H., Moghadam M.H.M., Sharif F., Mazinani S. Graphene-oxide stabilization in electrolyte solutions using hydroxyethyl cellulose for drug delivery application. Int. J. Pharm. 2015;484:276–282. doi: 10.1016/j.ijpharm.2015.02.069. PubMed DOI

Lonkar S.P., Deshmukh Y.S., Abdala A.A. Recent advances in chemical modifications of graphene. Nano Res. 2015;8:1039–1074. doi: 10.1007/s12274-014-0622-9. DOI

Zhang W.L., Liu Y.D., Choi H.J., Kim S.G. Electrorheology of Graphene Oxide. ACS Appl. Mater. Interfaces. 2012;4:2267–2272. doi: 10.1021/am300267f. PubMed DOI

Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI

Zhang W.L., Choi H.J. Graphene oxide based smart fluids. Soft Matter. 2014;10:6601–6608. doi: 10.1039/C4SM01151A. PubMed DOI

Hui C.M., Pietrasik J., Schmitt M., Mahoney C., Choi J., Bockstaller M.R., Matyjaszewski K. Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. Chem. Mat. 2014;26:745–762. doi: 10.1021/cm4023634. DOI

Hwang B., Lee J.S. Recent Advances in Memory Devices with Hybrid Materials. Adv. Electron. Mater. 2019;5:22. doi: 10.1002/aelm.201800519. DOI

Zhang X., Zhang J.Y., Chen Y., Cheng K., Yan J., Zhu K., Ye K., Wang G.L., Zhou L.M., Cao D.X. Freestanding 3D Polypyrrole@reduced graphene oxide hydrogels as binder-free electrode materials for flexible asymmetric supercapacitors. J. Colloid Interface Sci. 2019;536:291–299. doi: 10.1016/j.jcis.2018.10.044. PubMed DOI

Wang X.D., Yu K.X., An R., Han L.L., Zhang Y.L., Shi L.Y., Ran R. Self-assembling GO/modified HEC hybrid stabilized pickering emulsions and template polymerization for biomedical hydrogels. Carbohydr. Polym. 2019;207:694–703. doi: 10.1016/j.carbpol.2018.12.034. PubMed DOI

Osicka J., Ilcikova M., Mrlik M., Minarik A., Pavlinek V., Mosnacek J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers. 2017;9:14. doi: 10.3390/polym9070264. PubMed DOI PMC

Yin J.B., Wang X.X., Chang R.T., Zhao X.P. Polyaniline decorated graphene sheet suspension with enhanced electrorheology. Soft Matter. 2012;8:294–297. doi: 10.1039/C1SM06728A. DOI

Yin J.B., Chang R.T., Shui Y.J., Zhao X.P. Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions. Soft Matter. 2013;9:7468–7478. doi: 10.1039/c3sm51128f. DOI

Li Y.Z., Guan Y.Q., Liu Y., Yin J.B., Zhao X.P. Highly stable nanofluid based on polyhedral oligomeric silsesquioxane-decorated graphene oxide nanosheets and its enhanced electro-responsive behavior. Nanotechnology. 2016;27:11. doi: 10.1088/0957-4484/27/19/195702. PubMed DOI

Mrlik M., Ilcikova M., Plachy T., Moucka R., Pavlinek V., Mosnacek J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate) J. Ind. Eng. Chem. 2018;57:104–112. doi: 10.1016/j.jiec.2017.08.013. DOI

Ilcikova M., Mrlik M., Spitalsky Z., Micusik M., Csomorova K., Sasinkova V., Kleinova A., Mosnacek J. A tertiary amine in two competitive processes: Reduction of graphene oxide vs. catalysis of atom transfer radical polymerization. RSC Adv. 2015;5:3370–3376. doi: 10.1039/C4RA12915F. DOI

Zhang W.L., Park B.J., Choi H.J. Colloidal graphene oxide/polyaniline nanocomposites and its electrorheology. Chem. Commun. 2010;46:5596–5598. doi: 10.1039/c0cc00557f. PubMed DOI

Plachy T., Sedlacik M., Pavlinek V., Stejskal J., Graca M.P., Costa L.C. Temperature-dependent electrorheological effect and its description with respect to dielectric spectra. J. Intell. Mater. Syst. Struct. 2016;27:880–886. doi: 10.1177/1045389X15600801. DOI

Plachy T., Sedlacik M., Pavlinek V., Stejskal J. The observation of a conductivity threshold on the electrorheological effect of p-phenylenediamine oxidized with p-benzoquinone. J. Mater. Chem. C. 2015;3:9973–9980. doi: 10.1039/C5TC02119G. DOI

Sedlacik M., Pavlinek V. A tensiometric study of magnetorheological suspensions’ stability. RSC Adv. 2014;4:58377–58385. doi: 10.1039/C4RA11842A. DOI

Hong J.Y., Lee E., Jang J. Electro-responsive and dielectric characteristics of graphene sheets decorated with TiO2 nanorods. J. Mater. Chem. A. 2013;1:117–121. doi: 10.1039/C2TA00286H. DOI

Hu H.T., Wang X.B., Wang J.C., Liu F.M., Zhang M., Xu C.H. Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 2011;257:2637–2642. doi: 10.1016/j.apsusc.2010.10.035. DOI

Ilcikova M., Mrlik M., Babayan V., Kasak P. Graphene oxide modified by betaine moieties for improvement of electrorheological performance. RSC Adv. 2015;5:57820–57827. doi: 10.1039/C5RA08403B. DOI

Chen P., Cheng Q., Wang L.M., Liu Y.D., Choi H.J. Fabrication of dual-coated graphene oxide nanosheets by polypyrrole and poly (ionic liquid) and their enhanced electrorheological responses. J. Ind. Eng. Chem. 2019;69:106–115. doi: 10.1016/j.jiec.2018.09.022. DOI

Davis L.C. Time-dependent and nonlinear effects in electrorheological fluids. J. Appl. Phys. 1997;81:1985–1991. doi: 10.1063/1.364231. DOI

Zhang K., Liu Y.D., Jhon M.S., Choi H.J. Generalized yield stress equation for electrorheological fluids. J. Colloid Interface Sci. 2013;409:259–263. doi: 10.1016/j.jcis.2013.08.003. PubMed DOI

Moucka R., Sedlacik M., Cvek M. Dielectric properties of magnetorheological elastomers with different microstructure. Appl. Phys. Lett. 2018;112:4. doi: 10.1063/1.5021750. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...