Temperature-Dependent Rheological and Viscoelastic Investigation of a Poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-Based Thermogelling Hydrogel

. 2019 Aug 07 ; 10 (3) : . [epub] 20190807

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31394886

Grantová podpora
326998133 Deutsche Forschungsgemeinschaft
398461692 Deutsche Forschungsgemeinschaft
INST 105022/58-1 FUGG Deutsche Forschungsgemeinschaft
LO1504 Ministerstvo Školství, Mládeže a Tělovýchovy

The synthesis and characterization of an ABA triblock copolymer based on hydrophilic poly(2-methyl-2-oxazoline) (pMeOx) blocks A and a modestly hydrophobic poly(2-iso-butyl-2-oxazoline) (piBuOx) block B is described. Aqueous polymer solutions were prepared at different concentrations (1-20 wt %) and their thermogelling capability using visual observation was investigated at different temperatures ranging from 5 to 80 °C. As only a 20 wt % solution was found to undergo thermogelation, this concentration was investigated in more detail regarding its temperature-dependent viscoelastic profile utilizing various modes (strain or temperature sweep). The prepared hydrogels from this particular ABA triblock copolymer have interesting rheological and viscoelastic properties, such as reversible thermogelling and shear thinning, and may be used as bioink, which was supported by its very low cytotoxicity and initial printing experiments using the hydrogels. However, the soft character and low yield stress of the gels do not allow real 3D printing at this point.

Zobrazit více v PubMed

Peng H.Y., Wang W., Gao F.H., Lin S., Liu L.Y., Pu X.Q., Liu Z., Ju X.J., Xie R., Chu L.Y. Ultrasensitive diffraction gratings based on smart hydrogels for highly selective and rapid detection of trace heavy metal ions. J. Mater. Chem. C. 2018;6:11356–11367. doi: 10.1039/C8TC02347F. DOI

Ho L., Hsu S.H. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs. Acta Biomater. 2018;70:57–70. doi: 10.1016/j.actbio.2018.01.044. PubMed DOI

Hoogenboom R., Thijs H.M.L., Jochems M., van Lankvelt B.M., Fijten M.W.M., Schubert U.S. Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem. Commun. 2008:5758–5760. doi: 10.1039/b813140f. PubMed DOI

Hruby M., Filippov S.K., Panek J., Novakova M., Mackova H., Kucka J., Vetvicka D., Ulbrich K. Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems. Macromol. Biosci. 2010;10:916–924. doi: 10.1002/mabi.201000034. PubMed DOI

Salzinger S., Huber S., Jaksch S., Busch P., Jordan R., Papadakis C.M. Aggregation behavior of thermo-responsive poly(2-oxazoline)s at the cloud point investigated by FCS and SANS. Colloid Polym. Sci. 2012;290:385–400. doi: 10.1007/s00396-011-2564-z. DOI

Aseyev V., Hietala S., Laukkanen A., Nuopponen M., Confortini O., Du Prez F.E., Tenhu H. Mesoglobules of thermoresponsive polymers in dilute aqueous solutions above the LCST. Polymer. 2005;46:7118–7131. doi: 10.1016/j.polymer.2005.05.097. DOI

Navarro S., Shkilnyy A., Tiersch B., Taubert A., Menzel H. Preparation, Characterization, and Thermal Gelation of Amphiphilic Alkyl-poly(ethyleneimine) Langmuir. 2009;25:10558–10566. doi: 10.1021/la9013569. PubMed DOI

Foreman M.B., Coffman J.P., Murcia M.J., Cesana S., Jordan R., Smith G.S., Naumann C.A. Gelation of amphiphilic lipopolymers at the air-water interface: 2D analogue to 3D gelation of colloidal systems with grafted polymer chains? Langmuir. 2003;19:326–332. doi: 10.1021/la0261390. DOI

Oroojalian F., Babaei M., Taghdisi S.M., Abnous K., Ramezani M., Alibolandi M. Encapsulation of Thermo-responsive Gel in pH-sensitive Polymersomes as Dual-Responsive Smart carriers for Controlled Release of Doxorubicin. J. Control. Release. 2018;288:45–61. doi: 10.1016/j.jconrel.2018.08.039. PubMed DOI

Osaka N., Hamamoto K. Simultaneous stiffening, strengthening and toughening of poly(vinylidene fluoride)/propylene carbonate gels by thermal annealing near peak melting temperature. Polymer. 2018;141:132–142. doi: 10.1016/j.polymer.2018.03.003. DOI

Al Khateb K., Ozhmukhametova E.K., Mussin M.N., Seilkhanov S.K., Rakhypbekov T.K., Lau W.M., Khutoryanskiy V.V. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int. J. Pharm. 2016;502:70–79. doi: 10.1016/j.ijpharm.2016.02.027. PubMed DOI

Liu S.J., Bao H.Q., Li L. Role of PPO-PEO-PPO triblock copolymers in phase transitions of a PEO-PPO-PEO triblock copolymer in aqueous solution. Eur. Polym. J. 2015;71:423–439. doi: 10.1016/j.eurpolymj.2015.08.016. DOI

Costanzo S., Pasquino R., Donato R., Grizzuti N. Effect of polymer concentration and thermal history on the inverse thermogelation of hydroxypropylcellulose aqueous solutions. Polymer. 2017;132:157–163. doi: 10.1016/j.polymer.2017.10.066. DOI

Luxenhofer R., Han Y., Schulz A., Tong J., He Z., Kabanov A.V., Jordan R. Poly(2-oxazoline)s as Polymer Therapeutics. Macromol. Rapid Commun. 2012;33:1613–1631. doi: 10.1002/marc.201200354. PubMed DOI PMC

Lorson T., Lübtow M.M., Wegener E., Haider M.S., Borova S., Nahm D., Jordan R., Sokolski-Papkov M., Kabanov A.V., Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials. 2018;178:204–280. doi: 10.1016/j.biomaterials.2018.05.022. PubMed DOI

Viegas T.X., Bentley M.D., Harris J.M., Fang Z., Yoon K., Dizman B., Weimer R., Mero A., Pasut G., Veronese F.M. Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery. Bioconjugate Chem. 2011;22:976–986. doi: 10.1021/bc200049d. PubMed DOI

Weber C., Hoogenboom R., Schubert U.S. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog. Polym. Sci. 2012;37:686–714. doi: 10.1016/j.progpolymsci.2011.10.002. DOI

Monnery B.D., Jerca V.V., Sedlacek O., Verbraeken B., Cavill R., Hoogenboom R. Defined High Molar Mass Poly(2-Oxazoline)s. Angew. Chem. Int. Ed. 2018;57:15400–15404. doi: 10.1002/anie.201807796. PubMed DOI

Sedlacek O., Monnery B.D., Mattova J., Kucka J., Panek J., Janouskova O., Hocherl A., Verbraeken B., Vergaelen M., Zadinova M., et al. Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: In vitro and in vivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues. Biomaterials. 2017;146:1–12. doi: 10.1016/j.biomaterials.2017.09.003. PubMed DOI

Nawroth J.F., McDaniel J.R., Chilkoti A., Jordan R., Luxenhofer R. Maleimide-Functionalized Poly(2-Oxazoline)s and Their Conjugation to Elastin-Like Polypeptides. Macromol. Biosci. 2016;16:322–333. doi: 10.1002/mabi.201500376. PubMed DOI PMC

Moreadith R.W., Viegas T.X., Bentley M.D., Harris J.M., Fang Z., Yoon K., Dizman B., Weimer R., Rae B.P., Li X., et al. Clinical development of a poly(2-oxazoline) (POZ) polymer therapeutic for the treatment of Parkinson’s disease—Proof of concept of POZ as a versatile polymer platform for drug development in multiple therapeutic indications. Eur. Polym. J. 2017;88:524–552. doi: 10.1016/j.eurpolymj.2016.09.052. DOI

Yi X.A., Zimmerman M.C., Yang R.F., Tong J., Vinogradov S., Kabanov A.V. Pluronic-modified superoxide dismutase 1 attenuates angiotensin II-induced increase in intracellular superoxide in neurons. Free Radic. Biol. Med. 2010;49:548–558. doi: 10.1016/j.freeradbiomed.2010.04.039. PubMed DOI PMC

Tong J., Zimmerman M.C., Li S.M., Yi X., Luxenhofer R., Jordan R., Kabanov A.V. Neuronal uptake and intracellular superoxide scavenging of a fullerene (C-60)-poly(2-oxazoline)s nanoformulation. Biomaterials. 2011;32:3654–3665. doi: 10.1016/j.biomaterials.2011.01.068. PubMed DOI PMC

Mero A., Fang Z.H., Pasut G., Veronese F.M., Viegas T.X. Selective conjugation of poly(2-ethyl 2-oxazoline) to granulocyte colony stimulating factor. J. Control. Release. 2012;159:353–361. doi: 10.1016/j.jconrel.2012.02.025. PubMed DOI

Li J.W., Zhou Y.X., Li C.W., Wang D.S., Gao Y.J., Zhang C., Zhao L., Li Y.S., Liu Y., Li X.R. Poly(2-ethyl-2-oxazoline)-Doxorubicin Conjugate-Based Dual Endosomal pH-Sensitive Micelles with Enhanced Antitumor Efficacy. Bioconjugate Chem. 2015;26:110–119. doi: 10.1021/bc5004718. PubMed DOI

Lübtow M.M., Hahn L., Haider M.S., Luxenhofer R. Drug Specificity, Synergy and Antagonism in Ultrahigh Capacity Poly(2-oxazoline)/Poly(2-oxazine) based Formulations. J. Am. Chem. Soc. 2017;139:10980–10983. doi: 10.1021/jacs.7b05376. PubMed DOI

He Z., Wan X., Schulz A., Bludau H., Dobrovolskaia M.A., Stern S.T., Montgomery S.A., Yuan H., Li Z., Alakhova D., et al. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials. 2016;101:296–309. doi: 10.1016/j.biomaterials.2016.06.002. PubMed DOI PMC

Hwang D., Zhao Y.L., Liu H.D., Kabanov A., Gershon T., Sokolsky M. Enhanced efficacy of nano-formulated vismosdegib shows the potential for polyoxazoline micelles to improve drug delivery to brain tumors. Neuro-Oncology. 2018;20:139–140. doi: 10.1093/neuonc/noy059.498. DOI

Wan X.M., Min Y.Z., Bludau H., Keith A., Sheiko S.S., Jordan R., Wang A.Z., Sokolsky-Papkov M., Kabanov A.V. Drug Combination Synergy in Worm-like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer. ACS Nano. 2018;12:2426–2439. doi: 10.1021/acsnano.7b07878. PubMed DOI PMC

He Z.J., Schulz A., Wan X.M., Seitz J., Bludau H., Alakhova D.Y., Darr D.B., Perou C.M., Jordan R., Ojima I., et al. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: Preparation, in vitro and in vivo evaluation. J. Control. Release. 2015;208:67–75. doi: 10.1016/j.jconrel.2015.02.024. PubMed DOI PMC

Hahn L., Lübtow M.M., Lorson T., Schmitt F., Appelt-Menzel A., Schobert R., Luxenhofer R. Investigating the Influence of Aromatic Moieties on the Formulation of Hydrophobic Natural Products and Drugs in Poly(2-oxazoline)-Based Amphiphiles. Biomacromolecules. 2018;19:3119–3128. doi: 10.1021/acs.biomac.8b00708. PubMed DOI

Lübtow M.M., Kessler L., Appelt-Menzel A., Lorson T., Gangloff N., Kirsch M., Dahms S., Luxenhofer R. More Is Sometimes Less: Curcumin and Paclitaxel Formulations Using Poly(2-oxazoline) and Poly(2-oxazine)-Based Amphiphiles Bearing Linear and Branched C9 Side Chains. Macromol. Biosci. 2018;18:17. doi: 10.1002/mabi.201800155. PubMed DOI

Datta S., Jutkova A., Sramkova P., Lenkayska L., Huntosova V., Chorvat D., Miskovsky P., Jancura D., Kronek J. Unravelling the Excellent Chemical Stability and Bioavailability of Solvent Responsive Curcumin-Loaded 2-Ethyl-2-oxazoline-grad-2-(4-dodecyloxyphenyl)-2-oxazoline Copolymer Nanoparticles for Drug Delivery. Biomacromolecules. 2018;19:2459–2471. doi: 10.1021/acs.biomac.8b00057. PubMed DOI

Raveendran R., Mullen K.M., Wellard R.M., Sharma C.P., Hoogenboom R., Dargaville T.R. Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. Eur. Polym. J. 2017;93:682–694. doi: 10.1016/j.eurpolymj.2017.02.043. DOI

Lübtow M.M., Nelke L.C., Seifert J., Kühnemundt J., Sahay G., Dandekar G., Nietzer S., Luxenhofer R. Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models. J. Control. Release. 2019;303:162–180. doi: 10.1016/j.jconrel.2019.04.014. PubMed DOI

He Z.J., Miao L., Jordan R., S-Manickam D., Luxenhofer R., Kabanov A.V. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector. Macromol. Biosci. 2015;15:1004–1020. doi: 10.1002/mabi.201500021. PubMed DOI PMC

Konradi R., Acikgoz C., Textor M. Polyoxazolines for Nonfouling Surface Coatings — A Direct Comparison to the Gold Standard PEG. Macromol. Rapid Commun. 2012;33:1663–1676. doi: 10.1002/marc.201200422. PubMed DOI

Zhang N., Pompe T., Amin I., Luxenhofer R., Werner C., Jordan R. Tailored Poly(2-oxazoline) Polymer Brushes to Control Protein Adsorption and Cell Adhesion. Macromol. Biosci. 2012;12:926–936. doi: 10.1002/mabi.201200026. PubMed DOI

Bludau H., Czapar A.E., Pitek A.S., Shukla S., Jordan R., Steinmetz N.F. POxylation as an alternative stealth coating for biomedical applications. Eur. Polym. J. 2017;88:679–688. doi: 10.1016/j.eurpolymj.2016.10.041. PubMed DOI PMC

Mansfield E.D.H., de la Rosa V.R., Kowalczyk R.M., Grillo I., Hoogenboom R., Sillence K., Hole P., Williams A.C., Khutoryanskiy V.V. Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier. Biomater. Sci. 2016;4:1318–1327. doi: 10.1039/C6BM00375C. PubMed DOI

Schulz A., Stocco A., Bethry A., Lavigne J.P., Coudane J., Nottelet B. Direct Photomodification of Polymer Surfaces: Unleashing the Potential of Aryl-Azide Copolymers. Adv. Funct. Mater. 2018;28:7. doi: 10.1002/adfm.201800976. DOI

Dargaville T.R., Park J.-R., Hoogenboom R. Poly(2-oxazoline) Hydrogels: State-of-the-Art and Emerging Applications. Macromol. Biosci. 2018;18:1800070. doi: 10.1002/mabi.201800070. PubMed DOI

Hartlieb M., Kempe K., Schubert U.S. Covalently cross-linked poly(2-oxazoline) materials for biomedical applications – from hydrogels to self-assembled and templated structures. J. Mater. Chem. B. 2015;3:526–538. doi: 10.1039/C4TB01660B. PubMed DOI

Kelly A.M., Wiesbrock F. Strategies for the Synthesis of Poly(2-Oxazoline)-Based Hydrogels. Macromol. Rapid Commun. 2012;33:1632–1647. doi: 10.1002/marc.201200333. PubMed DOI

Zahoranová A., Kroneková Z., Zahoran M., Chorvát D., Janigová I., Kronek J. Poly(2-oxazoline) hydrogels crosslinked with aliphatic bis(2-oxazoline)s: Properties, cytotoxicity, and cell cultivation. J. Polym. Sci., Part A: Polym. Chem. 2015;54:1548–1559. doi: 10.1002/pola.28009. DOI

Lorson T., Jaksch S., Lübtow M.M., Jüngst T., Groll J., Lühmann T., Luxenhofer R. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules. 2017;18:2161–2171. doi: 10.1021/acs.biomac.7b00481. PubMed DOI

Zahoranova A., Mrlik M., Tomanova K., Kronek J., Luxenhofer R. ABA and BAB Triblock Copolymers Based on 2-Methyl-2-oxazoline and 2-n-Propyl-2-oxazoline: Synthesis and Thermoresponsive Behavior in Water. Macromol. Chem. Phys. 2017;218:12. doi: 10.1002/macp.201700031. DOI

Monnery B.D., Hoogenboom R. Thermoresponsive hydrogels formed by poly(2-oxazoline) triblock copolymers. Polym. Chem. 2019 doi: 10.1039/C9PY00300B. in print. DOI

Seo Y., Schulz A., Han Y., He Z., Bludau H., Wan X., Tong J., Bronich T.K., Sokolsky M., Luxenhofer R., et al. Poly(2-oxazoline) block copolymer based formulations of taxanes: effect of copolymer and drug structure, concentration, and environmental factors. Polym. Adv. Technol. 2015;26:837–850. doi: 10.1002/pat.3556. DOI

Lübtow M.M., Haider M.S., Kirsch M., Klisch S., Luxenhofer R. Like Dissolves Like? A Comprehensive Evaluation of Partial Solubility Parameters to Predict Polymer-Drug Compatibility in Ultra-High Drug Loaded Polymer Micelles. Biomacromolecules. 2019 doi: 10.1021/acs.biomac.9b00618. in print. PubMed DOI

Cvek M., Mrlik M., Pavlinek V. A rheological evaluation of steady shear magnetorheological flow behavior using three-parameter viscoplastic models. J. Rheol. 2016;60:687–694. doi: 10.1122/1.4954249. DOI

Townsend J.M., Beck E.C., Gehrke S.H., Berkland C.J., Detamore M.S. Flow behavior prior to crosslinking: The need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog. Polym. Sci. 2019;91:126–140. doi: 10.1016/j.progpolymsci.2019.01.003. PubMed DOI PMC

Moroni L., Boland T., Burdick J.A., De Maria C., Derby B., Forgacs G., Groll J., Li Q., Malda J., Mironov V.A., et al. Biofabrication: A Guide to Technology and Terminology. Trends Biotechnol. 2018;36:384–402. doi: 10.1016/j.tibtech.2017.10.015. PubMed DOI

Ruel-Gariepy E., Leroux J.C. In situ-forming hydrogels--review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004;58:409–426. doi: 10.1016/j.ejpb.2004.03.019. PubMed DOI

Gaharwar A.K., Avery R.K., Assmann A., Paul A., McKinley G.H., Khademhosseini A., Olsen B.D. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS nano. 2014;8:9833–9842. doi: 10.1021/nn503719n. PubMed DOI PMC

Dumas J.E., BrownBaer P.B., Prieto E.M., Guda T., Hale R.G., Wenke J.C., Guelcher S.A. Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects. Biomed. Mater. 2012;7:024112. doi: 10.1088/1748-6041/7/2/024112. PubMed DOI

Abbadessa A., Blokzijl M., Mouser V., Marica P., Malda J., Hennink W., Vermonden T. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications. Carbohydr. Polym. 2016;149:163–174. doi: 10.1016/j.carbpol.2016.04.080. PubMed DOI

Chen M.H., Wang L.L., Chung J.J., Kim Y.H., Atluri P., Burdick J.A. Methods To Assess Shear-Thinning Hydrogels for Application As Injectable Biomaterials. ACS Biomater. Sci. Eng. 2017;3:3146–3160. doi: 10.1021/acsbiomaterials.7b00734. PubMed DOI PMC

Peak C.W., Stein J., Gold K.A., Gaharwar A.K. Nanoengineered Colloidal Inks for 3D Bioprinting. Langmuir. 2018;34:917–925. doi: 10.1021/acs.langmuir.7b02540. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...