Magneto-responsive hyaluronan hydrogel for hyperthermia and bioprinting: Magnetic, rheological properties and biocompatibility
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37692374
PubMed Central
PMC10491462
DOI
10.1063/5.0147181
PII: 5.0147181
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Magneto-responsive soft hydrogels are used for a number of biomedical applications, e.g., magnetic hyperthermia, drug delivery, tissue engineering, and neuromodulation. In this work, this type of hydrogel has been fabricated from hyaluronan (HA) filled with a binary system of Al2O3 nanoparticles and multicore magnetic particles (MCPs), which were obtained by clustering of superparamagnetic iron oxide FeOx NPs. It was established that the presence of diamagnetic Al2O3 has several positive effects: it enhances the hydrogel storage modulus and long-term stability in the cell cultivation medium; prevents the magnetic interaction among the MCPs. The HA hydrogel provides rapid heating of 0.3 °C per min under exposure to low amplitude radio frequency alternating magnetic field. Furthermore, the magneto-responsive hydrogel was successfully used to encapsulate cells and extrusion-based 3D printing with 87±6% cell viability, thus providing a bio-ink. The combination of high heating efficiency, softness, cytocompatibility, and 3D printability of magnetic HA hydrogel leads to a material suitable for biomedical applications.
Zobrazit více v PubMed
Liu Z. et al., “ Recent advances on magnetic sensitive hydrogels in tissue engineering,” Front. Chem. 8, 124 (2020).10.3389/fchem.2020.00124 PubMed DOI PMC
Soares P. I. P. et al., “ Thermal and magnetic properties of iron oxide colloids: Influence of surfactants,” Nanotechnology 26, 425704 (2015).10.1088/0957-4484/26/42/425704 PubMed DOI
Levy M. et al., “ Long term in vivo biotransformation of iron oxide nanoparticles,” Biomaterials 32, 3988–3999 (2011).10.1016/j.biomaterials.2011.02.031 PubMed DOI
Gu J. et al., “ The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell,” Sci. China Life Sci. 54, 793–805 (2011).10.1007/s11427-011-4215-5 PubMed DOI
Mahmoudi M. et al., “ Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles,” Chem. Rev. 112, 2323–2338 (2012).10.1021/cr2002596 PubMed DOI
Dutz S. and Hergt R., “ Magnetic particle hyperthermia—A promising tumour therapy?,” Nanotechnology 25, 452001 (2014).10.1088/0957-4484/25/45/452001 PubMed DOI
Vangijzegem T., Stanicki D., and Laurent S., “ Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics,” Expert Opin. Drug Delivery 16, 69–78 (2019).10.1080/17425247.2019.1554647 PubMed DOI
Roet M. et al., “ Progress in neuromodulation of the brain: A role for magnetic nanoparticles?,” Prog. Neurobiol. 177, 1–14 (2019).10.1016/j.pneurobio.2019.03.002 PubMed DOI
Laurent S. et al., “ Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles,” Adv. Colloid Interface Sci. 166, 18–23 (2011).10.1016/j.cis.2011.04.003 PubMed DOI
Benwood C. et al., “ Biohydrogels with magnetic nanoparticles as crosslinker: Characteristics and potential use for controlled antitumor drug-delivery,” Acta Biomater. 8, 4244–4252 (2012).10.1016/j.actbio.2012.09.006 PubMed DOI
Guntnur R. T. et al., “ On-demand chemomagnetic modulation of striatal neurons facilitated by hybrid magnetic nanoparticles,” Adv. Funct. Mater. 32, 2204732 (2022).10.1002/adfm.202204732 PubMed DOI PMC
Chen R. et al., “ Wireless magnetothermal deep brain stimulation,” Science 347, 1477–1480 (2015).10.1126/science.1261821 PubMed DOI
Liu Y. et al., “ Noninvasive manipulation of ion channels for neuromodulation and theranostics,” Acc. Mater. Res. 3, 247 (2022).10.1021/accountsmr.1c00251 DOI
Hescham S. A. et al., “ Magnetothermal nanoparticle technology alleviates Parkinsonian-like symptoms in mice,” Nat. Commun. 12, 5569 (2021).10.1038/s41467-021-25837-4 PubMed DOI PMC
Kozielski K. L. et al., “ Nonresonant powering of injectable nanoelectrodes enables wireless deep brain stimulation in freely moving mice,” Sci. Adv. 7, eabc4189 (2021).10.1126/sciadv.abc4189 PubMed DOI PMC
Chen Z. et al., “ Wireless optogenetic modulation of cortical neurons enabled by radioluminescent nanoparticles,” ACS Nano 15, 5201–5208 (2021).10.1021/acsnano.0c10436 PubMed DOI
Wu S. et al., “ Genetically magnetic control of neural system via TRPV4 activation with magnetic nanoparticles,” Nano Today 39, 101187 (2021).10.1016/j.nantod.2021.101187 DOI
Tay A. et al., “ A 3D magnetic hyaluronic acid hydrogel for magnetomechanical neuromodulation of primary dorsal root ganglion neurons,” Adv. Mater. 30, e1800927 (2018).10.1002/adma.201800927 PubMed DOI
Rosenfeld D. et al., “ Magnetothermal modulation of calcium-dependent nerve growth,” Adv. Funct. Mater. 32, 0224558 (2022).10.1002/adfm.202204558 DOI
Gilchrist R. et al., “ Selective inductive heating of lymph nodes,” Ann. Surg. 146(4), 596–606 (1957).10.1097/00000658-195710000-00007 PubMed DOI PMC
Wells J. et al., “ Challenges and recommendations for magnetic hyperthermia characterization measurements,” Int. J. Hyperthermia 38, 447–460 (2021).10.1080/02656736.2021.1892837 PubMed DOI
Bender P. et al., “ Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles,” Nanotechnology 29(42), 425705 (2018).10.1088/1361-6528/aad67d PubMed DOI
Pourmiri S. et al., “ Magnetic properties and hyperthermia behavior of iron oxide nanoparticle clusters,” AIP Adv. 9, 125033 (2019).10.1063/1.5130425 DOI
Smolková I. S. et al., “ Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles,” Mater. Chem. Phys. 155, 178–190 (2015).10.1016/j.matchemphys.2015.02.022 DOI
Moradi M., He Q., and Willing G., “ Tuning the stabilization mechanism of nanoparticle-regulated complex fluids,” Colloids Surf., A 577, 532–540 (2019).10.1016/j.colsurfa.2019.06.021 DOI
Tohver V. et al., “ Nanoparticle halos: A new colloid stabilization mechanism,” Proc. Natl. Acad. Sci. U. S. A. 98, 8950–8954 (2001).10.1073/pnas.151063098 PubMed DOI PMC
Goldt A. E. et al., “ Humic acid-stabilized superparamagnetic maghemite nanoparticles: Surface charge and embryotoxicity evaluation,” Nanosystems 10, 184–189 (2019).10.17586/2220-8054-2019-10-2-184-189 DOI
Moroz P., Jones S. K., and Gray B. N., “ Magnetically mediated hyperthermia: Current status and future directions,” Int. J. Hyperthermia 18, 267–284 (2002).10.1080/02656730110108785 PubMed DOI
Jordan A. et al., “ Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia,” J. Magn. Magn. Mater. 225, 118–126 (2001).10.1016/S0304-8853(00)01239-7 DOI
Le Renard P. et al., “ The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia,” Biomaterials 31, 691–705 (2010).10.1016/j.biomaterials.2009.09.091 PubMed DOI
Ito A. et al., “ Medical application of functionalized magnetic nanoparticles,” J. Biosci. Bioeng. 100, 1–11 (2005).10.1263/jbb.100.1 PubMed DOI
Shi L. et al., “ Biocompatible injectable magnetic hydrogel formed by dynamic coordination network,” Appl. Mater. Interfaces 11, 46233–46240 (2019).10.1021/acsami.9b17627 PubMed DOI
Kazantseva N. E. et al., “ Magnetic nanomaterials for arterial embolization and hyperthermia of parenchymal organs tumors: A review,” Nanomaterials 11, 3402 (2021).10.3390/nano11123402 PubMed DOI PMC
Smolková I. S. et al., “ Maghemite based silicone composite for arterial embolization hyperthermia,” Mater. Sci. Eng., C 48, 632–641 (2015).10.1016/j.msec.2014.12.046 PubMed DOI
Li S. et al., “ Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials,” Carbohydr. Polym. 250, 116922 (2020).10.1016/j.carbpol.2020.116922 PubMed DOI
Choi Y. et al., “ 3D printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel,” Colloids Surf., B 208, 112108 (2021).10.1016/j.colsurfb.2021.112108 PubMed DOI
Vítková L. et al., “ Formulation of magneto-responsive hydrogels from dually cross-linked polysaccharides: Synthesis, tuning and evaluation of rheological properties,” Int. J. Mol. Sci. 23, 9633 (2022)..10.3390/ijms23179633 PubMed DOI PMC
Krouskop T. A. et al., “ Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imaging 20, 260–274 (1998). PubMed
Bartlett R. D. et al., “ Mechanical properties of the spinal cord and brain: Comparison with clinical-grade biomaterials for tissue engineering and regenerative medicine,” Biomaterials 258, 120303 (2020).10.1016/j.biomaterials.2020.120303 PubMed DOI
Xu W. C. et al., “ Engineering the biomechanical microenvironment of chondrocytes towards articular cartilage tissue engineering,” Life Sci. 309, 121043 (2022).10.1016/j.lfs.2022.121043 PubMed DOI
Warren D. et al., “ Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation,” APL Bioeng. 5, 020901 (2021).10.1063/5.0032196 PubMed DOI PMC
Prendergast M. E. and Burdick J. A., “ Recent advances in enabling technologies in 3D Printing for precision medicine,” Adv. Mater. 32, 1902516 (2020).10.1002/adma.201902516 PubMed DOI
Ko E. S. et al., “ 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles,” Carbohydr. Polym. 245, 116496 (2020).10.1016/j.carbpol.2020.116496 PubMed DOI
Zhu W. et al., “ Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture,” Biomaterials 124, 106–115 (2017).10.1016/j.biomaterials.2017.01.042 PubMed DOI PMC
Mainardi V. L. et al., “ Improving cell seeding efficiency through modification of fiber geometry in 3D printed scaffolds,” Biofabrication 13, 035025 (2021).10.1088/1758-5090/abe5b4 PubMed DOI
Pardo A. et al., “ Magnetically-assisted 3D bioprinting of anisotropic tissue-mimetic constructs,” Adv. Funct. Mater. 32, 2208940 (2022).10.1002/adfm.202208940 DOI
Smolková I. S. et al., “ Size dependent heating efficiency of multicore iron oxide particles in low-power alternating magnetic fields,” Acta Phys. Pol., A 131, 663–665 (2017).10.12693/APhysPolA.131.663 DOI
Musilová L. et al., “ Cross-linked gelatine by modified dextran as a potential bioink prepared by a simple and non-toxic process,” Polymers 14, 391 (2022).10.3390/polym14030391 PubMed DOI PMC
Maia J. et al., “ Insight on the periodate oxidation of dextran and its structural vicissitudes,” Polymer 52, 258–265 (2011).10.1016/j.polymer.2010.11.058 DOI
Mui J., Ngo J., and Kim B., “ Aggregation and colloidal stability of commercially available Al2O3 nanoparticles in aqueous environments,” Nanomaterials 6, 90 (2016).10.3390/nano6050090 PubMed DOI PMC
Zubir M. N. M. et al., “ Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system,” J. Colloid Interface Sci. 454, 245–255 (2015).10.1016/j.jcis.2015.05.019 PubMed DOI
Karimian H. and Babaluo A. A., “ Halos mechanism in stabilizing of colloidal suspensions: Nanoparticle weight fraction and pH effects,” J. Eur. Ceram. Soc. 27, 19–25 (2007).10.1016/j.jeurceramsoc.2006.05.109 DOI
Ota S. and Takemura Y., “ Characterization of Néel and Brownian relaxations isolated from complex dynamics influenced by dipole interactions in magnetic nanoparticles,” J. Phys. Chem. C 123, 28859 (2019).10.1021/acs.jpcc.9b06790 DOI
Obaidat I., Issa B., and Haik Y., “ Magnetic properties of magnetic nanoparticles for efficient hyperthermia,” Nanomaterials 5, 63–89 (2015).10.3390/nano5010063 PubMed DOI PMC
Smolkova I. S. et al., “ Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium,” J. Magn. Magn. Mater. 374, 508–515 (2015).10.1016/j.jmmm.2014.08.096 DOI
Engelmann U. et al., “ Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels,” J. Magn. Magn. Mater. 471, 486–494 (2019).10.1016/j.jmmm.2018.09.113 DOI
Ghebremedhin M., Seiffert S., and Vilgis T. A., “ Physics of agarose fluid gels: Rheological properties and microstructure,” Curr. Res. Food Sci. 4, 436–448 (2021).10.1016/j.crfs.2021.06.003 PubMed DOI PMC
Fernandéz E. et al., “ Rheological and thermal properties of agarose aqueous solutions and hydrogels,” J. Polym. Sci., Part B 46, 322–328 (2008).10.1002/polb.21370 DOI
Raja I. S. and Fathima N. N., “ Porosity and dielectric properties as tools to predict drug release trends from hydrogels,” SpringerPlus 3, 393 (2014).10.1186/2193-1801-3-393 PubMed DOI PMC
Zamani F., Tehran M. A., and Abbasi A., “ Fabrication of PCL nanofibrous scaffold with tuned porosity for neural cell culture,” Prog. Biomater. 10, 151–160 (2021).10.1007/s40204-021-00159-2 PubMed DOI PMC
Causa F., Netti P. A., and Ambrosio L., “ A multi-functional scaffold for tissue regeneration: The need to engineer a tissue analogue,” Biomaterials 28, 5093–5099 (2007).10.1016/j.biomaterials.2007.07.030 PubMed DOI
Hölzl K. et al., “ Bioink properties before, during and after 3D bioprinting,” Biofabrication 8, 032002 (2016).10.1088/1758-5090/8/3/032002 PubMed DOI
Lübtow M. M. et al., “ Temperature-dependent rheological and viscoelastic investigation of a poly(2-methyl-2-oxazoline)-b-poly(2-iso-butyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline)-based thermogelling hydrogel,” J. Funct. Biomater. 10, 36 (2019).10.3390/jfb10030036 PubMed DOI PMC
Mracek A. et al., “ The influence of Hofmeister series ions on hyaluronan swelling and viscosity,” Molecules 13, 1025–1034 (2008).10.3390/molecules13051025 PubMed DOI PMC
Sethi P. et al., “ 3D tumor tissue analogs and their orthotopic implants for understanding tumor-targeting of microenvironment-responsive nanosized chemotherapy and radiation,” Nanomedicine 11, 2013–2023. (2015).10.1016/j.nano.2015.07.013 PubMed DOI PMC
Upreti M., “ Tumor tissue analogs for the assessment of radioresistance in cancer stem cells,” Methods. Mol. Biol. 1692, 117–128 (2018).10.1007/978-1-4939-7401-6_11 PubMed DOI
Louderbough J. M. and Schroeder J. A., “ Understanding the dual nature of CD44 in breast cancer progression,” Mol. Cancer Res. 9, 1573–1586 (2011).10.1158/1541-7786.MCR-11-0156 PubMed DOI
Blaeser A. et al., “ Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity,” Adv. Healthcare Mater. 5, 326–333 (2015).10.1002/adhm.201500677 PubMed DOI
Ouyang L. et al., “ Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells,” Biofabrication 8, 035020 (2016).10.1088/1758-5090/8/3/035020 PubMed DOI
Roet M. et al., “ Deep brain stimulation for treatment-resistant depression: Towards a more personalized treatment approach,” J. Clin. Med. 9, 2729 (2020).10.3390/jcm9092729 PubMed DOI PMC
Hescham S. et al., “ Deep brain stimulation of the forniceal area enhances memory functions in experimental dementia: The role of stimulation parameters,” Brain Stimul. 6, 72–77 (2013).10.1016/j.brs.2012.01.008 PubMed DOI
Chaudhary S. and Chakraborty E., “ Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy,” Beni-Suef Univ. J. Basic Appl. Sci. 11, 3 (2022).10.1186/s43088-021-00172-1 PubMed DOI PMC
Jung M. et al., “ Advances in 3D bioprinting for cancer biology and precision medicine: From matrix design to application,” Adv. Healthcare Mater. 11, 2200690 (2022).10.1002/adhm.202200690 PubMed DOI