Cross-Linked Gelatine by Modified Dextran as a Potential Bioink Prepared by a Simple and Non-Toxic Process

. 2022 Jan 19 ; 14 (3) : . [epub] 20220119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35160381

Grantová podpora
DKRVO 494 (RP/CPS/2020/003) Ministry of Education, Youth and Sports of the Czech republic
Reg. No. CZ.02.2.69/0.0/0.0/19_073/0016941 Junior Grants of TBU in Zlín,
CZ.1.05/2.1.00/19.0376 CEBIA-Tech Instrumentation
20-498 28732S Czech Science Foundation

Essential features of well-designed materials intended for 3D bioprinting via microextrusion are the appropriate rheological behavior and cell-friendly environment. Despite the rapid development, few materials are utilizable as bioinks. The aim of our work was to design a novel cytocompatible material facilitating extrusion-based 3D printing while maintaining a relatively simple and straightforward preparation process without the need for harsh chemicals or radiation. Specifically, hydrogels were prepared from gelatines coming from three sources-bovine, rabbit, and chicken-cross-linked by dextran polyaldehyde. The influence of dextran concentration on the properties of hydrogels was studied. Rheological measurements not only confirmed the strong shear-thinning behavior of prepared inks but were also used for capturing cross-linking reaction kinetics and demonstrated quick achievement of gelation point (in most cases < 3 min). Their viscoelastic properties allowed satisfactory extrusion, forming a self-supported multi-layered uniformly porous structure. All gelatin-based hydrogels were non-cytototoxic. Homogeneous cells distribution within the printed scaffold was confirmed by fluorescence confocal microscopy. In addition, no disruption of cells structure was observed. The results demonstrate the great potential of the presented hydrogels for applications related to 3D bioprinting.

Zobrazit více v PubMed

Wei L., Jovina T., Wai Y., May W. Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication. 2018;10:1758–5090. doi: 10.1088/1758-5090/aa9e1e. PubMed DOI

Billiet T., Vandenhaute M., Schelfhout J., Vlierberghe S.V., Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33:6020–6041. doi: 10.1016/j.biomaterials.2012.04.050. PubMed DOI

Gopinathan J., Noh I. Recent trends in bioinks for 3D printing. Biomater. Res. 2018;22:11. doi: 10.1186/s40824-018-0122-1. PubMed DOI PMC

Ashammakhi N., Ahadian S., Xu C., Montazerian H., Ko H., Nasiri R., Barros N., Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater. Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008. PubMed DOI PMC

Gungor-Ozkerim P., Inci I., Zhang Y., Khademhosseini S., Dokmeci M. Bioinks for 3D bioprinting: An overview. Biomater. Sci. 2018;6:915–946. doi: 10.1039/C7BM00765E. PubMed DOI PMC

Dorishetty P., Dutta N., Choudhury N. Bioprintable tough hydrogels for tissue engineering applications. Adv. Colloid Interface Sci. 2020;281:102163. doi: 10.1016/j.cis.2020.102163. PubMed DOI

Chimene D., Kaunas R., Gaharwar A. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Adv. Mater. 2020;32:1902026–1902048. doi: 10.1002/adma.201902026. PubMed DOI

Chung S.H., Son S., Min J. The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates. Nanotechnology. 2010;21:125104. doi: 10.1088/0957-4484/21/12/125104. PubMed DOI

Ermis M., Antmen E., Hasirci V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact. Mater. 2018;3:355–369. doi: 10.1016/j.bioactmat.2018.05.005. PubMed DOI PMC

Buskermolen A., Suresh H., Shishvan S., Vigliotti A., DeSimone A., Kurniawan N., Bouten C., Deshpande V. Entropic Forces Drive Cellular Contact Guidance. Biophys. J. 2019;116:1994–2008. doi: 10.1016/j.bpj.2019.04.003. PubMed DOI PMC

Smith C., Stone A., Parkhill R., Stewart R., Simpkins M., Kachurin A., Warren W., Williams S. Three-Dimensional BioAssembly Tool for Generating Viable Tissue-Engineered Constructs. Tissue Eng. 2004;10:1566–1576. doi: 10.1089/ten.2004.10.1566. PubMed DOI

Blaeser A., Campos D.D., Puster U., Richtering W., Stevens M., Fischer H. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Adv. Healthc. Mater. 2016;5:326–333. doi: 10.1002/adhm.201500677. PubMed DOI

Hölzl K., Lin S., Tytgat L., Vlierberghe S.V., Gu L., Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8:032002–032020. doi: 10.1088/1758-5090/8/3/032002. PubMed DOI

Mackay M. The importance of rheological behavior in the additive manufacturing technique material extrusion. J. Rheol. 2018;62:1549–1561. doi: 10.1122/1.5037687. DOI

Mori A.D., Fernández M.P., Blunn G., Tozzi G., Roldo M. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers. 2018;10:285. doi: 10.3390/polym10030285. PubMed DOI PMC

Mazzocchi A., Devarasetty M., Huntwork R., Soker S., Skardal A. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication. 2019;11:015003–015014. doi: 10.1088/1758-5090/aae543. PubMed DOI PMC

Caló E., Khutoryanskiy V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015;65:252–267. doi: 10.1016/j.eurpolymj.2014.11.024. DOI

Gřundělová L., Gregorova A., Mráček A., Vícha R., Smolka P., Minařík A. Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr. Polym. 2015;119:142–148. doi: 10.1016/j.carbpol.2014.11.049. PubMed DOI

Dababneh A., Ozbolat I. Bioprinting Technology: A Current State-of-the-Art Review. J. Manuf. Sci. Eng. 2014;136:061016. doi: 10.1115/1.4028512. DOI

Jungst T., Smolan W., Schacht K., Scheibel T., Groll J. Strategies and Molecular Design Criteria for 3D Printable Hydrogels. Chem. Rev. 2016;116:1496–1539. doi: 10.1021/acs.chemrev.5b00303. PubMed DOI

Khunmanee S., Jeong Y., Park H. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J. Tissue Eng. 2017;8:2041731417726464–2041731417726479. doi: 10.1177/2041731417726464. PubMed DOI PMC

Musilová L., Mráček A., Kovalcik A., Smolka P., Minařík A., Humpolíček P., Vícha R., Ponížil P. Hyaluronan hydrogels modified by glycinated Kraft lignin: Morphology, swelling, viscoelastic properties and biocompatibility. Carbohydr. Polym. 2018;181:394–403. doi: 10.1016/j.carbpol.2017.10.048. PubMed DOI

Poldervaart M., Goversen B., de Ruijter M., Abbadessa A., Melchels F., Öner F., Dhert W., Vermonden T., Alblas J., Yamamoto M. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS ONE. 2017;12:e0177628. doi: 10.1371/journal.pone.0177628. PubMed DOI PMC

Skardal A., Zhang J., McCoard L., Xu X., Oottamasathien S., Prestwich G. Photocrosslinkable Hyaluronan-Gelatin Hydrogels for Two-Step Bioprinting. Tissue Eng. Part A. 2010;16:2675–2685. doi: 10.1089/ten.tea.2009.0798. PubMed DOI PMC

Sakai S., Ohi H., Taya M. Gelatin/Hyaluronic Acid Content in Hydrogels Obtained through Blue Light-Induced Gelation Affects Hydrogel Properties and Adipose Stem Cell Behaviors. Biomolecules. 2019;9:342. doi: 10.3390/biom9080342. PubMed DOI PMC

Dobos A., Hoorick J.V., Steiger W., Gruber P., Markovic M., Andriotis O., Rohatschek A., Dubruel P., Thurner P., Vlierberghe S.V., et al. Thiol–Gelatin–Norbornene Bioink for Laser-Based High-Definition Bioprinting. Adv. Healthc. Mater. 2019;9:1900752–1900761. doi: 10.1002/adhm.201900752. PubMed DOI

Noh I., Kim N., Tran H., Lee J., Lee C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater. Res. 2019;23:3. doi: 10.1186/s40824-018-0152-8. PubMed DOI PMC

Mehrotra S., Melo B., Hirano M., Keung W., Li R., Mandal B., Shin S. Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardium-on-a-Chip Application. Adv. Funct. Mater. 2020;30:1907436. doi: 10.1002/adfm.201907436. PubMed DOI PMC

Petta D., Armiento A., Grijpma D., Alini M., Eglin D., D’Este M. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking. Biofabrication. 2018;10:044104–044114. doi: 10.1088/1758-5090/aadf58. PubMed DOI

Kajave N., Schmitt T., Nguyen T.U., Kishore V. Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks. Mater. Sci. Eng. C. 2020;107:110290–110301. doi: 10.1016/j.msec.2019.110290. PubMed DOI PMC

Yu J.H., Fridrikh S.V., Rutledge G.C. The role of elasticity in the formation of electrospun fibers. Polymer. 2006;47:4789–4797. doi: 10.1016/j.polymer.2006.04.050. DOI

Angel Martinez-Ortiz M., Delia Hernandez-Fuentes A., Pimentel-Gonzalez D.J., Campos-Montiel R.G., Vargas-Torres A., Aguirre-Alvarez G. Extraction and characterization of collagen from rabbit skin: Partial characterization. CYTA-J. Food. 2015;13:253–258. doi: 10.1080/19476337.2014.946451. DOI

Yousefi A.M., Smucker B., Naber A., Wyrick C., Shaw C., Bennett K., Szekely S., Focke C., Wood K. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: A designed experiment. J. Biomater. Sci. 2017;29:195–216. doi: 10.1080/09205063.2017.1409022. PubMed DOI

Tanner R. A theory of die-swell. J. Polym. Sci. Part A-2 Polym. Phys. 1970;8:2067–2078. doi: 10.1002/pol.1970.160081203. DOI

Emmermacher J., Spura D., Cziommer J., Kilian D., Wollborn T., Fritsching U., Steingroewer J., Walther T., Gelinsky M., Lode A. Engineering considerations on extrusion-based bioprinting: Interactions of material behavior, mechanical forces and cells in the printing needle. Biofabrication. 2020;12:025022. doi: 10.1088/1758-5090/ab7553. PubMed DOI

Ning L., Yang B., Mohabatpour F., Betancourt N., Sarker M., Papagerakis P., Chen X. Process-induced cell damage: Pneumatic versus screw-driven bioprinting. Biofabrication. 2020;12:025011. doi: 10.1088/1758-5090/ab5f53. PubMed DOI

Mokrejš P., Gál R., Mrázek P. Biotechnology-Based Production of Food Gelatine from Poultry by-Products. Patent number: CZ 307665. 2019 May 16;

Mokrejš P., Mrázek P., Robert R.G., Pavlačková J. Biotechnological Preparation of Gelatines from Chicken Feet. Polymers. 2019;11:1060. doi: 10.3390/polym11061060. PubMed DOI PMC

Gál R., Mokrejš P., Mrázek P., Pavlačková J., Janáčová D., Orsavová J. Chicken Heads as a Promising By-Product for Preparation of Food Gelatins. Molecules. 2020;25:494. doi: 10.3390/molecules25030494. PubMed DOI PMC

Maia J., Carvalho R., Coelho J., Simoes P., Gil M. Insight on the Periodate Oxidation of Dextran and Its Structural Vicissitudes. Polymer. 2011;52:258–265. doi: 10.1016/j.polymer.2010.11.058. DOI

Zhao H., Heindel N. Determination of Degree of Substitution of Formyl Groups in Polyaldehyde Dextran by the Hydroxylamine Hydrochloride Method. Pharm. Res. 1991;8:400–402. doi: 10.1023/A:1015866104055. PubMed DOI

Ouyang L., Yao R., Zhao Y., Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8:035020–035033. doi: 10.1088/1758-5090/8/3/035020. PubMed DOI

Chattopadhyay S., Raines R. Collagen-based biomaterilas for wound healing. Biopolymers. 2014;8:821–830. doi: 10.1002/bip.22486. PubMed DOI PMC

Eisenbarth E. Biomaterials for Tissue Engineering. Adv. Eng. Mater. 2007;9:1051–1060. doi: 10.1002/adem.200700287. DOI

Young A.T., White O.C., Daniele M.A. Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels. Macromol. Biosci. 2020;20:2000183. doi: 10.1002/mabi.202000183. PubMed DOI PMC

Draye J.P., Delaey B., de Voorde A.V., Bulcke A.V.D., Reu B.D., Schacht E. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials. 1998;19:1677–1687. doi: 10.1016/S0142-9612(98)00049-0. PubMed DOI

Balakrishnan B., Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials. 2005;26:3941–3951. doi: 10.1016/j.biomaterials.2004.10.005. PubMed DOI

Kristiansen K., Potthast A., Christensen B. Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr. Res. 2010;345:1264–1271. doi: 10.1016/j.carres.2010.02.011. PubMed DOI

Liu Z., Li Y., Li W., Lian W., Kemell M., Hietala S., Figueiredo P., Li L., Mäkilä E., Ma M., et al. Close-loop dynamic nanohybrids on collagen-ark with in situ gelling transformation capability for biomimetic stage-specific diabetic wound healing. Mater. Horiz. 2019;6:385–393. doi: 10.1039/C8MH01145A. DOI

Nonsuwan P., Matsugami A., Hayashi F., Hyon S.H., Matsumura K. Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydr. Polym. 2019;204:131–141. doi: 10.1016/j.carbpol.2018.09.081. PubMed DOI

Winter H. Encyclopedia of Materials: Science and Technology. Elsevier; Amsterdam, The Netherlands: 2001. Chapter Physical and Chemical Gelation.

Wu D., Yu Y., Tan J., Huang L., Luo B., Lu L., Zhou C. 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Mater. Des. 2018;160:486–495. doi: 10.1016/j.matdes.2018.09.040. DOI

Khorshidi S., Karkhaneh A., Bonakdar S., Omidian M. High-strength functionalized pectin/fibroin hydrogel with tunable properties: A structure–property relationship study. J. Appl. Polym. Sci. 2019;137:48859–48872. doi: 10.1002/app.48859. DOI

Zehnder T., Freund T., Demir M., Detsch R., Boccaccini A. Fabrication of Cell-Loaded Two-Phase 3D Constructs for Tissue Engineering. Materials. 2016;9:887. doi: 10.3390/ma9110887. PubMed DOI PMC

McIlroy C., Olmsted P. Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. J. Rheol. 2017;61:379–397. doi: 10.1122/1.4976839. DOI

Comminal R., Serdeczny M., Pedersen D., Spangenberg J. Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing. Addit. Manuf. 2018;20:68–76. doi: 10.1016/j.addma.2017.12.013. DOI

Serdeczny M., Comminal R., Pedersen D., Spangenberg J. Experimental validation of a numerical model for the strand shape in material extrusion additive manufacturing. Addit. Manuf. 2018;24:145–153. doi: 10.1016/j.addma.2018.09.022. DOI

Xia H., Lu J., Tryggvason G. A numerical study of the effect of viscoelastic stresses in fused filament fabrication. Comput. Methods Appl. Mech. Eng. 2019;346:242–259. doi: 10.1016/j.cma.2018.11.031. DOI

Hebda M., McIlroy C., Whiteside B., Caton-Rose F., Coates P. A method for predicting geometric characteristics of polymer deposition during fused-filament-fabrication. Addit. Manuf. 2019;27:99–108. doi: 10.1016/j.addma.2019.02.013. DOI

Coogan T., Kazmer D. Modeling of interlayer contact and contact pressure during fused filament fabrication. J. Rheol. 2019;63:655–672. doi: 10.1122/1.5093033. DOI

Gopi S., Kontopoulou M. Investigation of thermoplastic melt flow and dimensionless groups in 3D bioplotting. Rheol. Acta. 2020;59:83–93. doi: 10.1007/s00397-019-01186-4. DOI

Ahmed E. Hydrogel: Preparation, characterization, and applications. J. Adv. Res. 2015;6:105–121. doi: 10.1016/j.jare.2013.07.006. PubMed DOI PMC

Trautmann A., Rüth M., Lemke H.D., Walther T., Hellmann R. Two-photon polymerization based large scaffolds for adhesion and proliferation studies of human primary fibroblasts. Opt. Laser Technol. 2018;106:474–480. doi: 10.1016/j.optlastec.2018.05.008. DOI

Choksakulnimitr S., Masuda S., Tokuda H., Takakura Y., Hashida M. In vitro cytotoxicity of macromolecules in different cell culture systems. J. Control. Release. 1995;34:233–241. doi: 10.1016/0168-3659(95)00007-U. DOI

Groot C.D., Luyn M.V., Dijk-Wolthuis W.V., Cadee J., Plantinga J., Otter W.D., Hennink W. In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials. 2001;22:1197–1203. doi: 10.1016/S0142-9612(00)00266-0. PubMed DOI

Poursamar S., Hatami J., Lehner A., da Silva C., Ferreira F., Antunes A. Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment. Mater. Sci. Eng. C. 2015;48:63–70. doi: 10.1016/j.msec.2014.10.074. PubMed DOI

Pronina E., Vorotnikov Y., Pozmogova T., Solovieva A., Miroshnichenko S., Plyusnin P., Pishchur D., Eltsov I., Edeleva M., Efremova M.S.O. No Catalyst Added Hydrogen Peroxide Oxidation of Dextran: An Environmentally Friendly Route to Multifunctional Polymers. ACS Sustain. Chem. Eng. 2020;8:5371–5379. doi: 10.1021/acssuschemeng.0c01030. DOI

Artzi N., Shazly T., Crespo C., Ramos A., Chenault H., Edelman E. Characterization of Star Adhesive Sealants Based on PEG/Dextran Hydrogels. Macromol. Biosci. 2009;9:754–765. doi: 10.1002/mabi.200800355. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...