The influence of Hofmeister series ions on hyaluronan swelling and viscosity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18560327
PubMed Central
PMC6245326
DOI
10.3390/molecules13051025
PII: 13051025
Knihovny.cz E-zdroje
- MeSH
- biomechanika MeSH
- chemické modely * MeSH
- difuze MeSH
- ionty chemie farmakologie MeSH
- kyselina hyaluronová chemie MeSH
- roztoky MeSH
- tlak MeSH
- viskozita účinky léků MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ionty MeSH
- kyselina hyaluronová MeSH
- roztoky MeSH
- voda MeSH
The dissolution of hyaluronan in water leads to its degradation, and as a result its molecular weight decreases. The degradation of hyaluronan is mainly influenced by temperature, solution composition, and also its pH. This study describes the influence of Hofmeister series ions on hyaluronan behaviour and hyaluronan film swelling by solutions of these ions. It was found that Hofmeister ions show lyotropic effects influencing the entanglement of hyaluronan coils and their expansion from solid polymer films into swollen gel state. The hydrophobic and hydrophilic interactions in the structure of hyaluronan macromolecules are represented by the mutual diffusion coefficient D(c), the mean mutual diffusion coefficient D(s), the expansion work of coil swelling RA(delta,s), the activation enthalpy of diffusion connected with swelling H(D,s) and kinematic viscosity of hyaluronan-ions solutions nu.
Zobrazit více v PubMed
Meyer K., Palmer J.W. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934;107:629–634.
Weissman B., Meyer K. The structure of hyalobiuronic acid and of hyaluronicacid from umbilical cord. J. Am. Chem. Soc. 1954;76:1753–1757.
Hascall V.C., Laurent T.C. Hyauloran: Structure and Physical Properties. Available online: http://www.glycoforum.gr.jp/
Fischer E., Callaghan P.T., Heatley F., Scott J.E. Shear flow affects secondary and tertiary structures in hyaluronan solution as shown by rheo-NMR. J. Mol. Struct. 2002;602-603:303–311. doi: 10.1016/S0022-2860(01)00733-5. DOI
Baldwin R.L. How Hofmeister ion interactions affect protein stability. Biophys. J. 1996;71:2056–2063. doi: 10.1016/S0006-3495(96)79404-3. PubMed DOI PMC
Suzuki A., Hirasa O. An approach to artificial muscle using polymer gels formed by microphase separation. Adv. Polym. Sci. 1993;110:241–261. doi: 10.1007/BFb0021135. DOI
Mráček A., Benešová K., Minařík T., Urban P., Lapčík L. The diffusion process of Sodium Hyaluronate (Na-HA) and Na-HA-n-alkyl derivatives films swelling. J. Biomed. Mat. Res. A. 2007;83A:184–190. doi: 10.1002/jbm.a.31188. PubMed DOI
Maroudas A., Weinberg P.D., Parker K.H., Winlove C.P. The distribution and diffusivities of small ions in chondroitin sulphate, hyaluronate and some proteoglycan solutions. Biophys. Chem. 1988;32:257–270. doi: 10.1016/0301-4622(88)87012-1. PubMed DOI
Parker K.H., Winlove C.P., Maroudas A. The theoretical distributions and diffusivities of small ions in chondroitin sulphate and hyaluronate. Biophys. Chem. 1988;32:271–282. doi: 10.1016/0301-4622(88)87013-3. PubMed DOI
Cowman M.K., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI
Almond A., Brass A., Sheeman J.K. Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasaccharides: comparison of molecular dynamics simulations with available NMR data. Glycobiology. 1998;8:973–980. doi: 10.1093/glycob/8.10.973. PubMed DOI
Gribbon P., Heng B.Ch., Hardingham T.E. The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. Biochem. J. 2000;350:329–335. doi: 10.1042/0264-6021:3500329. PubMed DOI PMC
Albersdörfer A., Sackman E. Swelling behaviour and viscoelasticity of ultrathin grafted hyaluronic acid films. Eur. Phys. J. B. 1999;10:663–672. doi: 10.1007/s100510050898. DOI
Haeshin L., Ho Choi S., Park T.G. Direct visualization of hyaluronic acid polymer chain by self-assembled one-dimensional array of gold nanoparticles. Macromolecules. 2006;39:23–25.
Miller-Chou B.A., Koenig J.L. Polymer dissolution. Prog. Polym. Sci. 2003;28:1223–1270. doi: 10.1016/S0079-6700(03)00045-5. DOI
Kunz W., Lo Nostro P., Ninham B.W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interf. Sci. 2004;9:1–18. doi: 10.1016/j.cocis.2004.05.004. DOI
Cacace M.G., Landau E.M., Ramsden J.J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Quart. Rev. Biophys. 1997;30:241–277. doi: 10.1017/S0033583597003363. PubMed DOI
Collins K.D., Washabauch M.W. The effect and behavior of water interfaces. Quart. Rev. Biophys. 1985;18:323–422. PubMed
Scott J.E., Cummings C., Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. hyaluronan is very efficient network-forming polymer. Biochem. J. 1991;274:699–705. PubMed PMC
Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate
Anticoagulant Polyethylene Terephthalate Surface by Plasma-Mediated Fucoidan Immobilization