The influence of Hofmeister series ions on hyaluronan swelling and viscosity

. 2008 May 01 ; 13 (5) : 1025-34. [epub] 20080501

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18560327

The dissolution of hyaluronan in water leads to its degradation, and as a result its molecular weight decreases. The degradation of hyaluronan is mainly influenced by temperature, solution composition, and also its pH. This study describes the influence of Hofmeister series ions on hyaluronan behaviour and hyaluronan film swelling by solutions of these ions. It was found that Hofmeister ions show lyotropic effects influencing the entanglement of hyaluronan coils and their expansion from solid polymer films into swollen gel state. The hydrophobic and hydrophilic interactions in the structure of hyaluronan macromolecules are represented by the mutual diffusion coefficient D(c), the mean mutual diffusion coefficient D(s), the expansion work of coil swelling RA(delta,s), the activation enthalpy of diffusion connected with swelling H(D,s) and kinematic viscosity of hyaluronan-ions solutions nu.

Zobrazit více v PubMed

Meyer K., Palmer J.W. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934;107:629–634.

Weissman B., Meyer K. The structure of hyalobiuronic acid and of hyaluronicacid from umbilical cord. J. Am. Chem. Soc. 1954;76:1753–1757.

Hascall V.C., Laurent T.C. Hyauloran: Structure and Physical Properties. Available online: http://www.glycoforum.gr.jp/

Fischer E., Callaghan P.T., Heatley F., Scott J.E. Shear flow affects secondary and tertiary structures in hyaluronan solution as shown by rheo-NMR. J. Mol. Struct. 2002;602-603:303–311. doi: 10.1016/S0022-2860(01)00733-5. DOI

Baldwin R.L. How Hofmeister ion interactions affect protein stability. Biophys. J. 1996;71:2056–2063. doi: 10.1016/S0006-3495(96)79404-3. PubMed DOI PMC

Suzuki A., Hirasa O. An approach to artificial muscle using polymer gels formed by microphase separation. Adv. Polym. Sci. 1993;110:241–261. doi: 10.1007/BFb0021135. DOI

Mráček A., Benešová K., Minařík T., Urban P., Lapčík L. The diffusion process of Sodium Hyaluronate (Na-HA) and Na-HA-n-alkyl derivatives films swelling. J. Biomed. Mat. Res. A. 2007;83A:184–190. doi: 10.1002/jbm.a.31188. PubMed DOI

Maroudas A., Weinberg P.D., Parker K.H., Winlove C.P. The distribution and diffusivities of small ions in chondroitin sulphate, hyaluronate and some proteoglycan solutions. Biophys. Chem. 1988;32:257–270. doi: 10.1016/0301-4622(88)87012-1. PubMed DOI

Parker K.H., Winlove C.P., Maroudas A. The theoretical distributions and diffusivities of small ions in chondroitin sulphate and hyaluronate. Biophys. Chem. 1988;32:271–282. doi: 10.1016/0301-4622(88)87013-3. PubMed DOI

Cowman M.K., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI

Almond A., Brass A., Sheeman J.K. Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasaccharides: comparison of molecular dynamics simulations with available NMR data. Glycobiology. 1998;8:973–980. doi: 10.1093/glycob/8.10.973. PubMed DOI

Gribbon P., Heng B.Ch., Hardingham T.E. The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. Biochem. J. 2000;350:329–335. doi: 10.1042/0264-6021:3500329. PubMed DOI PMC

Albersdörfer A., Sackman E. Swelling behaviour and viscoelasticity of ultrathin grafted hyaluronic acid films. Eur. Phys. J. B. 1999;10:663–672. doi: 10.1007/s100510050898. DOI

Haeshin L., Ho Choi S., Park T.G. Direct visualization of hyaluronic acid polymer chain by self-assembled one-dimensional array of gold nanoparticles. Macromolecules. 2006;39:23–25.

Miller-Chou B.A., Koenig J.L. Polymer dissolution. Prog. Polym. Sci. 2003;28:1223–1270. doi: 10.1016/S0079-6700(03)00045-5. DOI

Kunz W., Lo Nostro P., Ninham B.W. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interf. Sci. 2004;9:1–18. doi: 10.1016/j.cocis.2004.05.004. DOI

Cacace M.G., Landau E.M., Ramsden J.J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Quart. Rev. Biophys. 1997;30:241–277. doi: 10.1017/S0033583597003363. PubMed DOI

Collins K.D., Washabauch M.W. The effect and behavior of water interfaces. Quart. Rev. Biophys. 1985;18:323–422. PubMed

Scott J.E., Cummings C., Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. hyaluronan is very efficient network-forming polymer. Biochem. J. 1991;274:699–705. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...