Characterization at 25 °C of sodium hyaluronate in aqueous solutions obtained by transport techniques
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25849804
PubMed Central
PMC6272485
DOI
10.3390/molecules20045812
PII: molecules20045812
Knihovny.cz E-zdroje
- MeSH
- hydrodynamika MeSH
- kyselina hyaluronová analýza MeSH
- roztoky MeSH
- tepelná difuze MeSH
- termodynamika MeSH
- viskozita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina hyaluronová MeSH
- roztoky MeSH
Mutual diffusion coefficients, D, were determined for aqueous solutions of sodium hyaluronate (NaHy) at 25 °C and concentrations ranging from 0.00 to 1.00 g·dm(-3) using the Taylor dispersion technique. From these experimental data, it was possible to estimate some parameters, such as the hydrodynamic radius Rh, and the diffusion coefficient at infinitesimal concentration, D0, of hyaluronate ion, permitting us to have a better understanding of the structure of these systems of sodium hyaluronate in aqueous solutions. The additional viscosity measurements were done and Huggins constant, kH, and limiting viscosity number, [η], were computed for interaction NaHy/water and NaHy/NaHy determination.
Zobrazit více v PubMed
Meyer K., Palmer J.W. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934;107:629–634.
Garg H.G., Hales Ch.A. Chemistry and Biology of Hyaluronan. 1st ed. Elsevier; Oxford, UK: 2004.
Gřundělová L., Mráček A., Kašpárková V., Minařík A., Smolka P. The hyaluronan chain-chain interactions, conformations and coils size in solutions with quarternary salt. Carbohydr. Polym. 2013;98:1039–1044. doi: 10.1016/j.carbpol.2013.06.057. PubMed DOI
Verissimo L.M.P., Valada T.I.C., Sobral A.J.F.N., Azevedo E.E.F.G., Azevedo M.L.G., Ribeiro A.C.F. Mutual diffusion of sodium hyaluranate in aqueous solutions. J. Chem. Thermodyn. 2014;71:14–18. doi: 10.1016/j.jct.2013.11.019. DOI
Scott J.E. Supramolecular organisation of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6:2639–2645. PubMed
Scott J.E., Cummings C., Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochem. J. 1991;274:699–705. PubMed PMC
Heatley F., Scott J.E. A water molecule participates in the secondary structure of hyaluronan. Biochem. J. 1988;172:489–493. PubMed PMC
Mráček A., Benešová K., Minařík T., Urban P., Lapčík L. The diffusion process of Sodium Hyaluronate (Na-Ha) and Na-Ha-n-alkyl derivatives films swelling. J. Biomed. Mater. Res. 2007;83A:184–190. doi: 10.1002/jbm.a.31188. PubMed DOI
Mráček A., Varhaníková J., Gřundělová L., Pokopcová A., Lehocký M., Velebný V. The influence of Hofmeister series ions on Hyaluronan swelling and viscosity. Molecules. 2008;13:1025–1034. doi: 10.3390/molecules13051025. PubMed DOI PMC
Mráček A. The Measurement of Polymer Swelling Processes by an Interferometric Method and Evaluation of Diffusion Coefficients. Int. J. Mol. Sci. 2010;11:532–543. doi: 10.3390/ijms11020532. PubMed DOI PMC
Tyrrel H.J.V. Diffusion and Heat Flow in Liquids. 1st ed. Elsevier; London, UK: 1961.
Loh W. Taylor dispersion technique for investigation of diffusion in liquids and its applications. Quím. Nova. 1997;20:541–545. doi: 10.1590/S0100-40421997000500015. DOI
Barthel J., Gores J.H.J., Lohr C.M., Seidl J.J. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J. Solut. Chem. 1996;25:921–935.
Callendar R., Leaist D.G. Diffusion coefficients for binary, ternary, and polydisperse solutions from peak-width analysis of Taylor dispersion profiles. J. Solut. Chem. 2006;35:353–379. doi: 10.1007/s10953-005-9000-2. DOI
Barros M.C.F., Ribeiro A.C.F., Esteso M.A., Lobo V.M.M., Leaist D.G. Diffusion of levodopa in aqueous solutions of hydrochloric acid at 25 degrees. J. Chem. Thermodyn. 2014;72:44–47. doi: 10.1016/j.jct.2013.12.010. DOI
Barros M.C.F., Ribeiro A.C.F., Valente A.J.M., Lobo V.M.M., Cabral A.M.T.D.P.V., Veiga F.J.B., Teijeiro C., Esteso M.A. Mass transport techniques as a tool for a better understanding of the structure of l-dopa aqueous solutions. Int. J. Pharm. 2013;447:293–297. doi: 10.1016/j.ijpharm.2013.02.049. PubMed DOI
Ribeiro A.C.F., Rodrigo M.M., Barros M.C.F., Verissimo L.M.P., Romero C., Valente A.J.M., Esteso M.A. Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T = 298.15 K. J. Chem. Thermodyn. 2014;74:133–137. doi: 10.1016/j.jct.2014.01.017. DOI
Ribeiro A.C.F., Lobo V.M.M., Leaist D.G., Natividade J.J.S., Veríssimo L.P., Barros M.C.F., Cabral A.M.T.D.P.V. Binary diffusion coefficients for aqueous solutions of lactic acid. J. Solut. Chem. 2005;34:1009–1016. doi: 10.1007/s10953-005-6987-3. DOI
Ribeiro A.C.F., Valente A.J.M., Santos C.I.A.V., Prazeres P.M.R.A., Lobo V.M.M., Burrows H.D., Esteso M.A., Cabral A.M.T.D.P.V., Veiga F.J.B.J. Binary mutual diffusion coefficients of aqueous solutions of α-cyclodextrin, 2-hydroxypropyl-α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin at temperatures from 298.15 K to 312.15 K. J. Chem. Eng. Data. 2007;52:586–590. doi: 10.1021/je060474z. DOI
Ribeiro A.C.F., Santos C.I.A.V.A., Valente J.M., Ascenso O.S., Lobo V.M.M., Burrows H.D., Cabral A.M.T.D.P.V., Veiga F.J.B., Teijeiro C., Esteso M.A.J. Some transport properties of gamma-cyclodextrin aqueous solutions at 298.15 K and 310.15 K. J. Chem. Eng. Data. 2008;53:755–759. doi: 10.1021/je700598v. DOI
Ribeiro A.C.F., Fabela I., Sobral A.J.F.N., Verissimo L.M.P., Barros M.C.F., Melia Rodrigo M., Esteso M.A. Diffusion of sodium alginate in aqueous solutions at T = 298.15 K. J. Chem. Thermodyn. 2014;74:263–268. doi: 10.1016/j.jct.2014.02.014. DOI
Rodrigo M.M., Valente A.J.M., Barros M.C.F., Verissimo L.M.P., Romero C., Esteso M.A., Ribeiro A.C.F. Mutual diffusion coefficients of l-lysine in aqueous solution. J. Chem. Thermodyn. 2014;74:227–230. doi: 10.1016/j.jct.2014.02.008. DOI
Robinson R.A., Stokes R.H. Electrolyte Solutions. 2nd ed. Dover Publications Inc.; New York, NY, USA: 2002.
Harned H.S., Owen B.B. The Physical Chemistry of Electrolytic Solutions. 3rd ed. Reinhold Publ. Corp.; New York, NY, USA: 1967.
Bohdanecky M., Kovar J. In: Viscosity of Polymer Solutions. 1st ed. Jenkins J.D., editor. Volume 3 Elsevier; Amsterdam, The Netherland: 1982.
Scott J.E., Heatley F. Hyaluronan forms specific stable tertiary structures in aqueous solution: A 13C NMR study. Biochemistry. 1999;96:4850–4855. PubMed PMC
Šoltés L., Mendichi R., Lath D., Mach M., Bakoš D. Molecular characteristics of some commercial high-molecular-weight hyaluronans. Biomed. Chromatogr. 2002;16:459–462. doi: 10.1002/bmc.185. PubMed DOI
Ruckmani K., Shaikh S.Z., Khalil P., Muneera M.S., Thusleem O.A. Determination of sodium hyaluronate in pharmaceutical formulations by HPLC-UV. J. Pharm. Anal. 2013;3:324–329. doi: 10.1016/j.jpha.2013.02.001. PubMed DOI PMC
Caspersen M.B., Roubroeks J.P., Qun L., Shan H., Foght J., RuiDong Z., Tømmeraas K. Thermal degradation and stability of sodium hyaluronate in solid state. Carbohydr. Polym. 2014;107:25–30. doi: 10.1016/j.carbpol.2014.02.005. PubMed DOI
Lowry K.M., Beavers E.M. Thermal stability of sodium hyaluronate in aqueous solution. J. Biomed. Mater. Res. 1994;28:1239–1244. doi: 10.1002/jbm.820281014. PubMed DOI
Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties
Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate