Characterization at 25 °C of sodium hyaluronate in aqueous solutions obtained by transport techniques

. 2015 Apr 02 ; 20 (4) : 5812-24. [epub] 20150402

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25849804

Mutual diffusion coefficients, D, were determined for aqueous solutions of sodium hyaluronate (NaHy) at 25 °C and concentrations ranging from 0.00 to 1.00 g·dm(-3) using the Taylor dispersion technique. From these experimental data, it was possible to estimate some parameters, such as the hydrodynamic radius Rh, and the diffusion coefficient at infinitesimal concentration, D0, of hyaluronate ion, permitting us to have a better understanding of the structure of these systems of sodium hyaluronate in aqueous solutions. The additional viscosity measurements were done and Huggins constant, kH, and limiting viscosity number, [η], were computed for interaction NaHy/water and NaHy/NaHy determination.

Zobrazit více v PubMed

Meyer K., Palmer J.W. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934;107:629–634.

Garg H.G., Hales Ch.A. Chemistry and Biology of Hyaluronan. 1st ed. Elsevier; Oxford, UK: 2004.

Gřundělová L., Mráček A., Kašpárková V., Minařík A., Smolka P. The hyaluronan chain-chain interactions, conformations and coils size in solutions with quarternary salt. Carbohydr. Polym. 2013;98:1039–1044. doi: 10.1016/j.carbpol.2013.06.057. PubMed DOI

Verissimo L.M.P., Valada T.I.C., Sobral A.J.F.N., Azevedo E.E.F.G., Azevedo M.L.G., Ribeiro A.C.F. Mutual diffusion of sodium hyaluranate in aqueous solutions. J. Chem. Thermodyn. 2014;71:14–18. doi: 10.1016/j.jct.2013.11.019. DOI

Scott J.E. Supramolecular organisation of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6:2639–2645. PubMed

Scott J.E., Cummings C., Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochem. J. 1991;274:699–705. PubMed PMC

Heatley F., Scott J.E. A water molecule participates in the secondary structure of hyaluronan. Biochem. J. 1988;172:489–493. PubMed PMC

Mráček A., Benešová K., Minařík T., Urban P., Lapčík L. The diffusion process of Sodium Hyaluronate (Na-Ha) and Na-Ha-n-alkyl derivatives films swelling. J. Biomed. Mater. Res. 2007;83A:184–190. doi: 10.1002/jbm.a.31188. PubMed DOI

Mráček A., Varhaníková J., Gřundělová L., Pokopcová A., Lehocký M., Velebný V. The influence of Hofmeister series ions on Hyaluronan swelling and viscosity. Molecules. 2008;13:1025–1034. doi: 10.3390/molecules13051025. PubMed DOI PMC

Mráček A. The Measurement of Polymer Swelling Processes by an Interferometric Method and Evaluation of Diffusion Coefficients. Int. J. Mol. Sci. 2010;11:532–543. doi: 10.3390/ijms11020532. PubMed DOI PMC

Tyrrel H.J.V. Diffusion and Heat Flow in Liquids. 1st ed. Elsevier; London, UK: 1961.

Loh W. Taylor dispersion technique for investigation of diffusion in liquids and its applications. Quím. Nova. 1997;20:541–545. doi: 10.1590/S0100-40421997000500015. DOI

Barthel J., Gores J.H.J., Lohr C.M., Seidl J.J. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J. Solut. Chem. 1996;25:921–935.

Callendar R., Leaist D.G. Diffusion coefficients for binary, ternary, and polydisperse solutions from peak-width analysis of Taylor dispersion profiles. J. Solut. Chem. 2006;35:353–379. doi: 10.1007/s10953-005-9000-2. DOI

Barros M.C.F., Ribeiro A.C.F., Esteso M.A., Lobo V.M.M., Leaist D.G. Diffusion of levodopa in aqueous solutions of hydrochloric acid at 25 degrees. J. Chem. Thermodyn. 2014;72:44–47. doi: 10.1016/j.jct.2013.12.010. DOI

Barros M.C.F., Ribeiro A.C.F., Valente A.J.M., Lobo V.M.M., Cabral A.M.T.D.P.V., Veiga F.J.B., Teijeiro C., Esteso M.A. Mass transport techniques as a tool for a better understanding of the structure of l-dopa aqueous solutions. Int. J. Pharm. 2013;447:293–297. doi: 10.1016/j.ijpharm.2013.02.049. PubMed DOI

Ribeiro A.C.F., Rodrigo M.M., Barros M.C.F., Verissimo L.M.P., Romero C., Valente A.J.M., Esteso M.A. Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T = 298.15 K. J. Chem. Thermodyn. 2014;74:133–137. doi: 10.1016/j.jct.2014.01.017. DOI

Ribeiro A.C.F., Lobo V.M.M., Leaist D.G., Natividade J.J.S., Veríssimo L.P., Barros M.C.F., Cabral A.M.T.D.P.V. Binary diffusion coefficients for aqueous solutions of lactic acid. J. Solut. Chem. 2005;34:1009–1016. doi: 10.1007/s10953-005-6987-3. DOI

Ribeiro A.C.F., Valente A.J.M., Santos C.I.A.V., Prazeres P.M.R.A., Lobo V.M.M., Burrows H.D., Esteso M.A., Cabral A.M.T.D.P.V., Veiga F.J.B.J. Binary mutual diffusion coefficients of aqueous solutions of α-cyclodextrin, 2-hydroxypropyl-α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin at temperatures from 298.15 K to 312.15 K. J. Chem. Eng. Data. 2007;52:586–590. doi: 10.1021/je060474z. DOI

Ribeiro A.C.F., Santos C.I.A.V.A., Valente J.M., Ascenso O.S., Lobo V.M.M., Burrows H.D., Cabral A.M.T.D.P.V., Veiga F.J.B., Teijeiro C., Esteso M.A.J. Some transport properties of gamma-cyclodextrin aqueous solutions at 298.15 K and 310.15 K. J. Chem. Eng. Data. 2008;53:755–759. doi: 10.1021/je700598v. DOI

Ribeiro A.C.F., Fabela I., Sobral A.J.F.N., Verissimo L.M.P., Barros M.C.F., Melia Rodrigo M., Esteso M.A. Diffusion of sodium alginate in aqueous solutions at T = 298.15 K. J. Chem. Thermodyn. 2014;74:263–268. doi: 10.1016/j.jct.2014.02.014. DOI

Rodrigo M.M., Valente A.J.M., Barros M.C.F., Verissimo L.M.P., Romero C., Esteso M.A., Ribeiro A.C.F. Mutual diffusion coefficients of l-lysine in aqueous solution. J. Chem. Thermodyn. 2014;74:227–230. doi: 10.1016/j.jct.2014.02.008. DOI

Robinson R.A., Stokes R.H. Electrolyte Solutions. 2nd ed. Dover Publications Inc.; New York, NY, USA: 2002.

Harned H.S., Owen B.B. The Physical Chemistry of Electrolytic Solutions. 3rd ed. Reinhold Publ. Corp.; New York, NY, USA: 1967.

Bohdanecky M., Kovar J. In: Viscosity of Polymer Solutions. 1st ed. Jenkins J.D., editor. Volume 3 Elsevier; Amsterdam, The Netherland: 1982.

Scott J.E., Heatley F. Hyaluronan forms specific stable tertiary structures in aqueous solution: A 13C NMR study. Biochemistry. 1999;96:4850–4855. PubMed PMC

Šoltés L., Mendichi R., Lath D., Mach M., Bakoš D. Molecular characteristics of some commercial high-molecular-weight hyaluronans. Biomed. Chromatogr. 2002;16:459–462. doi: 10.1002/bmc.185. PubMed DOI

Ruckmani K., Shaikh S.Z., Khalil P., Muneera M.S., Thusleem O.A. Determination of sodium hyaluronate in pharmaceutical formulations by HPLC-UV. J. Pharm. Anal. 2013;3:324–329. doi: 10.1016/j.jpha.2013.02.001. PubMed DOI PMC

Caspersen M.B., Roubroeks J.P., Qun L., Shan H., Foght J., RuiDong Z., Tømmeraas K. Thermal degradation and stability of sodium hyaluronate in solid state. Carbohydr. Polym. 2014;107:25–30. doi: 10.1016/j.carbpol.2014.02.005. PubMed DOI

Lowry K.M., Beavers E.M. Thermal stability of sodium hyaluronate in aqueous solution. J. Biomed. Mater. Res. 1994;28:1239–1244. doi: 10.1002/jbm.820281014. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...