Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UIDB/QUI/00313/2020
Fundação para a Ciência e Tecnologia
RP/CPS/2020/003
Ministry of Education, Youth and Sports of the Czech Republic DKRVO
PubMed
36769218
PubMed Central
PMC9917444
DOI
10.3390/ijms24032889
PII: ijms24032889
Knihovny.cz E-zdroje
- Klíčová slova
- diffusion, diffusion coefficients, salting-in, sodium hyaluronate, transport properties, viscosity, β-cyclodextrin,
- MeSH
- beta-cyklodextriny * MeSH
- cyklodextriny * MeSH
- difuze MeSH
- kyselina hyaluronová MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-cyklodextriny * MeSH
- cyklodextriny * MeSH
- kyselina hyaluronová MeSH
- voda MeSH
Knowledge of mass transport parameters, diffusion, and viscosity of hyaluronic acid (HA) in the presence of cyclodextrins is of considerable importance for areas such as food packaging and drug delivery, among others. Despite a number of studies investigating the functionalization of HA or the corresponding sodium salt by cyclodextrins, only a few studies have reported the effect of cyclodextrins on the mass transport of HA in the presence of these oligosaccharides. Here, we report the tracer binary and ternary interdiffusion coefficients of sodium hyaluronate (NaHy) in water and aqueous β-cyclodextrin solutions. The diffusion behavior of sodium hyaluronate was dependent on the reduced viscosity of NaHy, which, in turn, presented a concave dependence on concentration, with a minimum at approximately 2.5 g dm-3. The significant decrease in the limiting diffusion coefficient of NaHy (at most 45%) at NaHy concentrations below 1 g dm-3 in the presence of β-cyclodextrin, taking water as the reference, allowed us to conclude that NaHy strongly interacted with the cyclodextrin.
Department of Chemistry Centro de Química University of Coimbra 3004 535 Coimbra Portugal
Faculdade de Farmácia Universidade de Coimbra 3000 548 Coimbra Portugal
Faculty of Health Sciences Universidad Católica de Ávila Calle Los Canteros s n 05005 Ávila Spain
U D Química Física Universidad de Alcalá 28805 Alcalá de Henares Spain
Zobrazit více v PubMed
Ågren U.M., Tammi M., Ryynänen M., Tammi R. Developmentally Programmed Expression of Hyaluronan in Human Skin and its Appendages. J. Investig. Dermatol. 1997;109:219–224. doi: 10.1111/1523-1747.ep12319412. PubMed DOI
Liang J., Jiang D., Noble P.W. Hyaluronan as a therapeutic target in human diseases. Adv. Drug Deliv. Rev. 2016;97:186–203. doi: 10.1016/j.addr.2015.10.017. PubMed DOI PMC
Di Mola A., Landi M.R., Massa A., D’Amora U., Guarino V. Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int. J. Mol. Sci. 2022;23:14372. doi: 10.3390/ijms232214372. PubMed DOI PMC
Azevedo E.F.G., Azevedo M.L.G., Ribeiro A.C.F., Mráček A., Gřundĕlová L., Minařík A. Hyaluronic acid transport properties and its medical applications in voice disorders. In: Hagui R., Torrens F., editors. Innovations in Physical Chemistry: Monograph Serie, Engineering Technology and Industrial Chemistry with Applications. Apple Academic Press; Palm Bay, FL, USA: 2018.
Pérez L.A., Hernández R., Alonso J.M., Pérez-González R., Sáez-Martínez V. Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines. 2021;9:1113. doi: 10.3390/biomedicines9091113. PubMed DOI PMC
Charlot A., Heyraud A., Guenot P., Rinaudo M., Auzély-Velty R. Controlled Synthesis and Inclusion Ability of a Hyaluronic Acid Derivative Bearing β-Cyclodextrin Molecules. Biomacromolecules. 2006;7:907–913. doi: 10.1021/bm0507094. PubMed DOI
Sakulwech S., Lourith N., Ruktanonchai U., Kanlayavattanakul M. Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian J. Pharm. Sci. 2018;13:498–504. doi: 10.1016/j.ajps.2018.05.006. PubMed DOI PMC
Nakama T., Ooya T., Yui N. Gelation Rate Modulation of anα-Cyclodextrin and Poly(ethylene glycol)-Grafted Hyaluronic Acid Solution System by Inclusion Complexation of a Microphase-Separated Structure. Macromol. Rapid Commun. 2004;25:739–742. doi: 10.1002/marc.200300251. DOI
Singh P., Wu L., Ren X., Zhang W., Tang Y., Chen Y., Carrier A., Zhang X., Zhang J. Hyaluronic-acid-based β-cyclodextrin grafted copolymers as biocompatible supramolecular hosts to enhance the water solubility of tocopherol. Int. J. Pharm. 2020;586:119542. doi: 10.1016/j.ijpharm.2020.119542. PubMed DOI
Singh P., Chen Y., Tyagi D., Wu L., Ren X., Feng J., Carrier A., Luan T., Tang Y., Zhang J., et al. β-Cyclodextrin-grafted hyaluronic acid as a supramolecular polysaccharide carrier for cell-targeted drug delivery. Int. J. Pharm. 2021;602:120602. doi: 10.1016/j.ijpharm.2021.120602. PubMed DOI
Wang Y., Tang Z., Guo X., Zhao Y., Ren S., Zhang Z., Lv H. Hyaluronic acid-cyclodextrin encapsulating paeonol for treatment of atopic dermatitis. Int. J. Pharm. 2022;623:121916. doi: 10.1016/j.ijpharm.2022.121916. PubMed DOI
Yin H., Zhao F., Zhang D., Li J. Hyaluronic acid conjugated β-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. Int. J. Pharm. 2015;483:169–179. doi: 10.1016/j.ijpharm.2015.02.022. PubMed DOI
Seçer S., Ceylan Tuncaboylu D. Supramolecular poloxamer-based in situ gels with hyaluronic acid and cyclodextrins. Int. J. Polym. Mater. Polym. Biomater. 2022;71:647–655. doi: 10.1080/00914037.2021.1876055. DOI
Nakama T., Ooya T., Yui N. Temperature- and pH-Controlled Hydrogelation of Poly(ethylene glycol)-Grafted Hyaluronic Acid by Inclusion Complexation with α-Cyclodextrin. Polym. J. 2004;36:338–344. doi: 10.1295/polymj.36.338. DOI
Bai Y., Liu C.-P., Chen D., Liu C.-F., Zhuo L.-H., Li H., Wang C., Bu H.-T., Tian W. β-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH- and esterase- dual-responsive drug delivery. Carbohydr. Polym. 2020;246:116654. doi: 10.1016/j.carbpol.2020.116654. PubMed DOI
Valente A.J.M., Söderman O. The formation of host-guest complexes between surfactants and cyclodextrins. Adv. Colloid Interface Sci. 2014;205:156–176. doi: 10.1016/j.cis.2013.08.001. PubMed DOI
Cova T.F., Murtinho D., Pais A.A.C.C., Valente A.J.M. Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics. Front. Chem. 2018;6:271. doi: 10.3389/fchem.2018.00271. PubMed DOI PMC
Fang G., Yang X., Chen S., Wang Q., Zhang A., Tang B. Cyclodextrin-based host–guest supramolecular hydrogels for local drug delivery. Coord. Chem. Rev. 2022;454:214352. doi: 10.1016/j.ccr.2021.214352. DOI
Higashi T. Cyclodextrin-Based Molecular Accessories for Drug Discovery and Drug Delivery. Chem. Pharm. Bull. 2019;67:289–298. doi: 10.1248/cpb.c18-00735. PubMed DOI
Alvarez-Lorenzo C., García-González C.A., Concheiro A. Cyclodextrins as versatile building blocks for regenerative medicine. J. Control. Release. 2017;268:269–281. doi: 10.1016/j.jconrel.2017.10.038. PubMed DOI
Ataei S., Azari P., Hassan A., Pingguan-Murphy B., Yahya R., Muhamad F. Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. Adv. Polym. Technol. 2020;2020:1–21. doi: 10.1155/2020/9040535. DOI
Cova T.F.G.G., Murtinho D., Pais A.A.C.C., Valente A.J.M. Cyclodextrin-based Materials for Removing Micropollutants From Wastewater. Curr. Org. Chem. 2018;22:2150–2181. doi: 10.2174/1385272822666181019125315. DOI
Utzeri G., Cova T.F., Murtinho D., Pais A.A.C.C., Valente A.J.M. Insights on macro- and microscopic interactions between Confidor and cyclodextrin-based nanosponges. Chem. Eng. J. 2023;455:140882. doi: 10.1016/j.cej.2022.140882. DOI
Aguado R., Santos A.R.M.G., Vallejos S., Valente A.J.M. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines. Molecules. 2022;27:2900. doi: 10.3390/molecules27092900. PubMed DOI PMC
Bae J., Shin K., Kwon O.S., Hwang Y., An J., Jang A., Kim H.J., Lee C.-S. A succinct review of refined chemical sensor systems based on conducting polymer–cyclodextrin hybrids. J. Ind. Eng. Chem. 2019;79:19–28. doi: 10.1016/j.jiec.2019.06.051. DOI
Mráček A., Gřundělová L., Minařík A., Veríssimo L., Barros M., Ribeiro A. Characterization at 25 °C of Sodium Hyaluronate in Aqueous Solutions Obtained by Transport Techniques. Molecules. 2015;20:5812–5824. doi: 10.3390/molecules20045812. PubMed DOI PMC
Musilová L., Mráček A., Kašpárková V., Minařík A., Valente A.J.M., Azevedo E.F.G., Veríssimo L.M.P., Rodrigo M.M., Esteso M.A., Ribeiro A.C.F. Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate. Int. J. Mol. Sci. 2021;22:1932. doi: 10.3390/ijms22041932. PubMed DOI PMC
Veríssimo L.M.P., Valada T.I.C., Sobral A.J.F.N., Azevedo E.E.F.G., Azevedo M.L.G., Ribeiro A.C.F. Mutual diffusion of sodium hyaluranate in aqueous solutions. J. Chem. Thermodyn. 2014;71:14–18. doi: 10.1016/j.jct.2013.11.019. DOI
Ribeiro A.C.F., Musilová L., Mráček A., Cabral A.M.T.D.P.V., Ana Santos M., Cabral I., Esteso M.A., Valente A.J.M., Leaist D. Host-guest paracetamol/cyclodextrin complex formation evaluated from coupled diffusion measurements. J. Chem. Thermodyn. 2021;161:106551. doi: 10.1016/j.jct.2021.106551. DOI
Flory P.J. Principles of Polymer Chemistry. Cornell University Press; Ithaca, NY, USA: 1995.
Hersloef A., Sundeloef L.O., Edsman K. Interaction between polyelectrolyte and surfactant of opposite charge: Hydrodynamic effects in the sodium hyaluronate/tetradecyltrimethylammonium bromide/sodium chloride/water system. J. Phys. Chem. 1992;96:2345–2348. doi: 10.1021/j100184a061. DOI
Cowman M.K., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI
Ribitsch G., Schurz J., Ribitsch V. Investigation of the solution structure of hyaluronic acid by light scattering, SAXS, and viscosity measurements. Colloid Polym. Sci. 1980;258:1322–1334. doi: 10.1007/BF01668780. DOI
Musilová L., Kašpárková V., Mráček A., Minařík A., Minařík M. The behaviour of hyaluronan solutions in the presence of Hofmeister ions: A light scattering, viscometry and surface tension study. Carbohydr. Polym. 2019;212:395–402. doi: 10.1016/j.carbpol.2019.02.032. PubMed DOI
Marcus Y. Effect of Ions on the Structure of Water: Structure Making and Breaking. Chem. Rev. 2009;109:1346–1370. doi: 10.1021/cr8003828. PubMed DOI
Jonsson B., Lindman B., Holmberg K., Kronberg B. Surfactants and Polymers in Aqueous Solution. John Wiley & Sons; New York, NY, USA: 1998.
Valente A.J.M., Nilsson M., Söderman O. Interactions between n-octyl and n-nonyl beta-D-glucosides and alpha- and beta-cyclodextrins as seen by self-diffusion NMR. J. Colloid Interface Sci. 2005;281:218–224. doi: 10.1016/j.jcis.2004.08.018. PubMed DOI
Ribeiro A.C.F.A.C.F., Leaist D.G.D.G., Esteso M.A.M.A., Lobo V.M.M.V.M.M., Valente A.J.M.A.J.M., Santos C.I.A.V.C.I.A.V., Cabral A.M.T.D.P.V., Veiga F.J.B.F.J.B., Cabrai A.M.T.D.P.V., Veiga F.J.B.F.J.B. Binary Mutual Diffusion Coefficients of Aqueous Solutions of β-Cyclodextrin at Temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data. 2006;51:1368–1371. doi: 10.1021/je060092t. DOI
Tyrrell H.J.V., Harris K.R. Diffusion in Liquids. Butterworths; London, UK: 1984.
Callendar R., Leaist D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006;35:353–379. doi: 10.1007/s10953-005-9000-2. DOI
Barthel J., Gores H.J., Lohr C.M., Seidl J.J. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J. Solut. Chem. 1996;25:921–935. doi: 10.1007/BF00972589. DOI
Loh W. A técnica de dispersão de taylor para estudos de difusão em líquidos e suas aplicações. Quim. Nova. 1997;20:541–545. doi: 10.1590/S0100-40421997000500015. DOI
Alizadeh A., Nieto de Castro C.A., Wakeham W.A. The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int. J. Thermophys. 1980;1:243–284. doi: 10.1007/BF00517126. DOI
Matos Lopes M.L.S., Nieto de Castro C.A., Sengers J.V. Mutual diffusivity of a mixture of n-hexane and nitrobenzene near its consolute point. Int. J. Thermophys. 1992;13:283–294. doi: 10.1007/BF00504437. DOI
Deng Z., Leaist D.G. Ternary mutual diffusion coefficients of MgCl 2 + MgSO 4 + H 2 O and Na 2 SO 4 + MgSO 4 + H 2 O from Taylor dispersion profiles. Can. J. Chem. 1991;69:1548–1553. doi: 10.1139/v91-229. DOI
Leaist D.G. Ternary diffusion coefficients of 18-crown-6 ether–KCl–water by direct least-squares analysis of Taylor dispersion measurements. J. Chem. Soc. Faraday Trans. 1991;87:597–601. doi: 10.1039/FT9918700597. DOI