Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties

. 2023 Feb 02 ; 24 (3) : . [epub] 20230202

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36769218

Grantová podpora
UIDB/QUI/00313/2020 Fundação para a Ciência e Tecnologia
RP/CPS/2020/003 Ministry of Education, Youth and Sports of the Czech Republic DKRVO

Knowledge of mass transport parameters, diffusion, and viscosity of hyaluronic acid (HA) in the presence of cyclodextrins is of considerable importance for areas such as food packaging and drug delivery, among others. Despite a number of studies investigating the functionalization of HA or the corresponding sodium salt by cyclodextrins, only a few studies have reported the effect of cyclodextrins on the mass transport of HA in the presence of these oligosaccharides. Here, we report the tracer binary and ternary interdiffusion coefficients of sodium hyaluronate (NaHy) in water and aqueous β-cyclodextrin solutions. The diffusion behavior of sodium hyaluronate was dependent on the reduced viscosity of NaHy, which, in turn, presented a concave dependence on concentration, with a minimum at approximately 2.5 g dm-3. The significant decrease in the limiting diffusion coefficient of NaHy (at most 45%) at NaHy concentrations below 1 g dm-3 in the presence of β-cyclodextrin, taking water as the reference, allowed us to conclude that NaHy strongly interacted with the cyclodextrin.

Zobrazit více v PubMed

Ågren U.M., Tammi M., Ryynänen M., Tammi R. Developmentally Programmed Expression of Hyaluronan in Human Skin and its Appendages. J. Investig. Dermatol. 1997;109:219–224. doi: 10.1111/1523-1747.ep12319412. PubMed DOI

Liang J., Jiang D., Noble P.W. Hyaluronan as a therapeutic target in human diseases. Adv. Drug Deliv. Rev. 2016;97:186–203. doi: 10.1016/j.addr.2015.10.017. PubMed DOI PMC

Di Mola A., Landi M.R., Massa A., D’Amora U., Guarino V. Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int. J. Mol. Sci. 2022;23:14372. doi: 10.3390/ijms232214372. PubMed DOI PMC

Azevedo E.F.G., Azevedo M.L.G., Ribeiro A.C.F., Mráček A., Gřundĕlová L., Minařík A. Hyaluronic acid transport properties and its medical applications in voice disorders. In: Hagui R., Torrens F., editors. Innovations in Physical Chemistry: Monograph Serie, Engineering Technology and Industrial Chemistry with Applications. Apple Academic Press; Palm Bay, FL, USA: 2018.

Pérez L.A., Hernández R., Alonso J.M., Pérez-González R., Sáez-Martínez V. Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines. 2021;9:1113. doi: 10.3390/biomedicines9091113. PubMed DOI PMC

Charlot A., Heyraud A., Guenot P., Rinaudo M., Auzély-Velty R. Controlled Synthesis and Inclusion Ability of a Hyaluronic Acid Derivative Bearing β-Cyclodextrin Molecules. Biomacromolecules. 2006;7:907–913. doi: 10.1021/bm0507094. PubMed DOI

Sakulwech S., Lourith N., Ruktanonchai U., Kanlayavattanakul M. Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian J. Pharm. Sci. 2018;13:498–504. doi: 10.1016/j.ajps.2018.05.006. PubMed DOI PMC

Nakama T., Ooya T., Yui N. Gelation Rate Modulation of anα-Cyclodextrin and Poly(ethylene glycol)-Grafted Hyaluronic Acid Solution System by Inclusion Complexation of a Microphase-Separated Structure. Macromol. Rapid Commun. 2004;25:739–742. doi: 10.1002/marc.200300251. DOI

Singh P., Wu L., Ren X., Zhang W., Tang Y., Chen Y., Carrier A., Zhang X., Zhang J. Hyaluronic-acid-based β-cyclodextrin grafted copolymers as biocompatible supramolecular hosts to enhance the water solubility of tocopherol. Int. J. Pharm. 2020;586:119542. doi: 10.1016/j.ijpharm.2020.119542. PubMed DOI

Singh P., Chen Y., Tyagi D., Wu L., Ren X., Feng J., Carrier A., Luan T., Tang Y., Zhang J., et al. β-Cyclodextrin-grafted hyaluronic acid as a supramolecular polysaccharide carrier for cell-targeted drug delivery. Int. J. Pharm. 2021;602:120602. doi: 10.1016/j.ijpharm.2021.120602. PubMed DOI

Wang Y., Tang Z., Guo X., Zhao Y., Ren S., Zhang Z., Lv H. Hyaluronic acid-cyclodextrin encapsulating paeonol for treatment of atopic dermatitis. Int. J. Pharm. 2022;623:121916. doi: 10.1016/j.ijpharm.2022.121916. PubMed DOI

Yin H., Zhao F., Zhang D., Li J. Hyaluronic acid conjugated β-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. Int. J. Pharm. 2015;483:169–179. doi: 10.1016/j.ijpharm.2015.02.022. PubMed DOI

Seçer S., Ceylan Tuncaboylu D. Supramolecular poloxamer-based in situ gels with hyaluronic acid and cyclodextrins. Int. J. Polym. Mater. Polym. Biomater. 2022;71:647–655. doi: 10.1080/00914037.2021.1876055. DOI

Nakama T., Ooya T., Yui N. Temperature- and pH-Controlled Hydrogelation of Poly(ethylene glycol)-Grafted Hyaluronic Acid by Inclusion Complexation with α-Cyclodextrin. Polym. J. 2004;36:338–344. doi: 10.1295/polymj.36.338. DOI

Bai Y., Liu C.-P., Chen D., Liu C.-F., Zhuo L.-H., Li H., Wang C., Bu H.-T., Tian W. β-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH- and esterase- dual-responsive drug delivery. Carbohydr. Polym. 2020;246:116654. doi: 10.1016/j.carbpol.2020.116654. PubMed DOI

Valente A.J.M., Söderman O. The formation of host-guest complexes between surfactants and cyclodextrins. Adv. Colloid Interface Sci. 2014;205:156–176. doi: 10.1016/j.cis.2013.08.001. PubMed DOI

Cova T.F., Murtinho D., Pais A.A.C.C., Valente A.J.M. Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics. Front. Chem. 2018;6:271. doi: 10.3389/fchem.2018.00271. PubMed DOI PMC

Fang G., Yang X., Chen S., Wang Q., Zhang A., Tang B. Cyclodextrin-based host–guest supramolecular hydrogels for local drug delivery. Coord. Chem. Rev. 2022;454:214352. doi: 10.1016/j.ccr.2021.214352. DOI

Higashi T. Cyclodextrin-Based Molecular Accessories for Drug Discovery and Drug Delivery. Chem. Pharm. Bull. 2019;67:289–298. doi: 10.1248/cpb.c18-00735. PubMed DOI

Alvarez-Lorenzo C., García-González C.A., Concheiro A. Cyclodextrins as versatile building blocks for regenerative medicine. J. Control. Release. 2017;268:269–281. doi: 10.1016/j.jconrel.2017.10.038. PubMed DOI

Ataei S., Azari P., Hassan A., Pingguan-Murphy B., Yahya R., Muhamad F. Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. Adv. Polym. Technol. 2020;2020:1–21. doi: 10.1155/2020/9040535. DOI

Cova T.F.G.G., Murtinho D., Pais A.A.C.C., Valente A.J.M. Cyclodextrin-based Materials for Removing Micropollutants From Wastewater. Curr. Org. Chem. 2018;22:2150–2181. doi: 10.2174/1385272822666181019125315. DOI

Utzeri G., Cova T.F., Murtinho D., Pais A.A.C.C., Valente A.J.M. Insights on macro- and microscopic interactions between Confidor and cyclodextrin-based nanosponges. Chem. Eng. J. 2023;455:140882. doi: 10.1016/j.cej.2022.140882. DOI

Aguado R., Santos A.R.M.G., Vallejos S., Valente A.J.M. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines. Molecules. 2022;27:2900. doi: 10.3390/molecules27092900. PubMed DOI PMC

Bae J., Shin K., Kwon O.S., Hwang Y., An J., Jang A., Kim H.J., Lee C.-S. A succinct review of refined chemical sensor systems based on conducting polymer–cyclodextrin hybrids. J. Ind. Eng. Chem. 2019;79:19–28. doi: 10.1016/j.jiec.2019.06.051. DOI

Mráček A., Gřundělová L., Minařík A., Veríssimo L., Barros M., Ribeiro A. Characterization at 25 °C of Sodium Hyaluronate in Aqueous Solutions Obtained by Transport Techniques. Molecules. 2015;20:5812–5824. doi: 10.3390/molecules20045812. PubMed DOI PMC

Musilová L., Mráček A., Kašpárková V., Minařík A., Valente A.J.M., Azevedo E.F.G., Veríssimo L.M.P., Rodrigo M.M., Esteso M.A., Ribeiro A.C.F. Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate. Int. J. Mol. Sci. 2021;22:1932. doi: 10.3390/ijms22041932. PubMed DOI PMC

Veríssimo L.M.P., Valada T.I.C., Sobral A.J.F.N., Azevedo E.E.F.G., Azevedo M.L.G., Ribeiro A.C.F. Mutual diffusion of sodium hyaluranate in aqueous solutions. J. Chem. Thermodyn. 2014;71:14–18. doi: 10.1016/j.jct.2013.11.019. DOI

Ribeiro A.C.F., Musilová L., Mráček A., Cabral A.M.T.D.P.V., Ana Santos M., Cabral I., Esteso M.A., Valente A.J.M., Leaist D. Host-guest paracetamol/cyclodextrin complex formation evaluated from coupled diffusion measurements. J. Chem. Thermodyn. 2021;161:106551. doi: 10.1016/j.jct.2021.106551. DOI

Flory P.J. Principles of Polymer Chemistry. Cornell University Press; Ithaca, NY, USA: 1995.

Hersloef A., Sundeloef L.O., Edsman K. Interaction between polyelectrolyte and surfactant of opposite charge: Hydrodynamic effects in the sodium hyaluronate/tetradecyltrimethylammonium bromide/sodium chloride/water system. J. Phys. Chem. 1992;96:2345–2348. doi: 10.1021/j100184a061. DOI

Cowman M.K., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI

Ribitsch G., Schurz J., Ribitsch V. Investigation of the solution structure of hyaluronic acid by light scattering, SAXS, and viscosity measurements. Colloid Polym. Sci. 1980;258:1322–1334. doi: 10.1007/BF01668780. DOI

Musilová L., Kašpárková V., Mráček A., Minařík A., Minařík M. The behaviour of hyaluronan solutions in the presence of Hofmeister ions: A light scattering, viscometry and surface tension study. Carbohydr. Polym. 2019;212:395–402. doi: 10.1016/j.carbpol.2019.02.032. PubMed DOI

Marcus Y. Effect of Ions on the Structure of Water: Structure Making and Breaking. Chem. Rev. 2009;109:1346–1370. doi: 10.1021/cr8003828. PubMed DOI

Jonsson B., Lindman B., Holmberg K., Kronberg B. Surfactants and Polymers in Aqueous Solution. John Wiley & Sons; New York, NY, USA: 1998.

Valente A.J.M., Nilsson M., Söderman O. Interactions between n-octyl and n-nonyl beta-D-glucosides and alpha- and beta-cyclodextrins as seen by self-diffusion NMR. J. Colloid Interface Sci. 2005;281:218–224. doi: 10.1016/j.jcis.2004.08.018. PubMed DOI

Ribeiro A.C.F.A.C.F., Leaist D.G.D.G., Esteso M.A.M.A., Lobo V.M.M.V.M.M., Valente A.J.M.A.J.M., Santos C.I.A.V.C.I.A.V., Cabral A.M.T.D.P.V., Veiga F.J.B.F.J.B., Cabrai A.M.T.D.P.V., Veiga F.J.B.F.J.B. Binary Mutual Diffusion Coefficients of Aqueous Solutions of β-Cyclodextrin at Temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data. 2006;51:1368–1371. doi: 10.1021/je060092t. DOI

Tyrrell H.J.V., Harris K.R. Diffusion in Liquids. Butterworths; London, UK: 1984.

Callendar R., Leaist D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006;35:353–379. doi: 10.1007/s10953-005-9000-2. DOI

Barthel J., Gores H.J., Lohr C.M., Seidl J.J. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J. Solut. Chem. 1996;25:921–935. doi: 10.1007/BF00972589. DOI

Loh W. A técnica de dispersão de taylor para estudos de difusão em líquidos e suas aplicações. Quim. Nova. 1997;20:541–545. doi: 10.1590/S0100-40421997000500015. DOI

Alizadeh A., Nieto de Castro C.A., Wakeham W.A. The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int. J. Thermophys. 1980;1:243–284. doi: 10.1007/BF00517126. DOI

Matos Lopes M.L.S., Nieto de Castro C.A., Sengers J.V. Mutual diffusivity of a mixture of n-hexane and nitrobenzene near its consolute point. Int. J. Thermophys. 1992;13:283–294. doi: 10.1007/BF00504437. DOI

Deng Z., Leaist D.G. Ternary mutual diffusion coefficients of MgCl 2 + MgSO 4 + H 2 O and Na 2 SO 4 + MgSO 4 + H 2 O from Taylor dispersion profiles. Can. J. Chem. 1991;69:1548–1553. doi: 10.1139/v91-229. DOI

Leaist D.G. Ternary diffusion coefficients of 18-crown-6 ether–KCl–water by direct least-squares analysis of Taylor dispersion measurements. J. Chem. Soc. Faraday Trans. 1991;87:597–601. doi: 10.1039/FT9918700597. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...