Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UID/QUI/00313/2020
Fundação para a Ciência e a Tecnologia
RP/CPS/2020/003
Ministry of Education, Youth and Sports of the Czech Republic DKRVO
PubMed
33669232
PubMed Central
PMC7919783
DOI
10.3390/ijms22041932
PII: ijms22041932
Knihovny.cz E-zdroje
- Klíčová slova
- Hofmeister series, sodium hyaluronate, transport properties, viscosity,
- MeSH
- anionty chemie MeSH
- biologický transport MeSH
- chlorid lithný chemie MeSH
- chlorid sodný chemie MeSH
- difuze MeSH
- kationty chemie MeSH
- kyselina hyaluronová chemie MeSH
- osmolární koncentrace MeSH
- roztoky MeSH
- síran amonný chemie MeSH
- síran hořečnatý chemie MeSH
- sírany chemie MeSH
- soli chemie MeSH
- teplota MeSH
- thiokyanatany chemie MeSH
- viskozita MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anionty MeSH
- chlorid lithný MeSH
- chlorid sodný MeSH
- kationty MeSH
- kyselina hyaluronová MeSH
- roztoky MeSH
- síran amonný MeSH
- síran hořečnatý MeSH
- sírany MeSH
- sodium sulfate MeSH Prohlížeč
- sodium thiocyanate MeSH Prohlížeč
- soli MeSH
- thiocyanic acid MeSH Prohlížeč
- thiokyanatany MeSH
- voda MeSH
Tracer diffusion coefficients obtained from the Taylor dispersion technique at 25.0 °C were measured to study the influence of sodium, ammonium and magnesium salts at 0.01 and 0.1 mol dm-3 on the transport behavior of sodium hyaluronate (NaHy, 0.1%). The selection of these salts was based on their position in Hofmeister series, which describe the specific influence of different ions (cations and anions) on some physicochemical properties of a system that can be interpreted as a salting-in or salting-out effect. In our case, in general, an increase in the ionic strength (i.e., concentrations at 0.01 mol dm-3) led to a significant decrease in the limiting diffusion coefficient of the NaHy 0.1%, indicating, in those circumstances, the presence of salting-in effects. However, the opposite effect (salting-out) was verified with the increase in concentration of some salts, mainly for NH4SCN at 0.1 mol dm-3. In this particular salt, the cation is weakly hydrated and, consequently, its presence does not favor interactions between NaHy and water molecules, promoting, in those circumstances, less resistance to the movement of NaHy and thus to the increase of its diffusion (19%). These data, complemented by viscosity measurements, permit us to have a better understanding about the effect of these salts on the transport behaviour of NaHy.
Department of Chemistry University of Coimbra CQC 3004 535 Coimbra Portugal
U D Química Física Universidad de Alcalá 28871 Alcalá de Henares Spain
Universidad Católica Santa Teresa de Jesús de Ávila Calle los Canteros s n 05005 Ávila Spain
Zobrazit více v PubMed
Meyer K., Palmer J. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934;107:629–640. doi: 10.1016/S0021-9258(18)75338-6. DOI
Garg H., Hales C., editors. Chemistry and Biology of Hyaluronan. Elsevier Ltd.; Amsterdam, The Netherlands: 2004.
McDonald J.N., Levick J.R. Effect of intra-articular hyaluronan on pressure-flow relation across synovium in anaesthetized rabbits. J. Physiol. 1995;485:179–193. doi: 10.1113/jphysiol.1995.sp020722. PubMed DOI PMC
Coleman P.J., Scott D., Mason R.M., Levick J.R. Characterization of the effect of high molecular weight hyaluronan on trans-synovial flow in rabbit knees. J. Physiol. 1999;514:265–282. doi: 10.1111/j.1469-7793.1999.265af.x. PubMed DOI PMC
Choi J.H., Kim J.S., Kim W.K., Lee W., Kim N., Song C.U., Jung J.J., Song J.E., Khang G. Evaluation of Hyaluronic Acid/Agarose Hydrogel for Cartilage Tissue Engineering Biomaterial. Macromol. Res. 2020;28:979–985. doi: 10.1007/s13233-020-8137-6. DOI
Huynh A., Priefer R. Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology. Carbohydr. Res. 2020;489:107950. doi: 10.1016/j.carres.2020.107950. PubMed DOI
Azevedo E.F.G., Azevedo M.L.G., Ribeiro A.C.F., Mráček A., Gřundĕlová L., Minařík A. Hyaluronic acid transport properties and its medical applications in voice disorders. In: Hagui R., Torrens F., editors. Innovations in Physical Chemistry: Monograph Serie, Engineering Technology and Industrial Chemistry with Applications. Apple Academic Press; Palm Bay, FL, USA: 2018.
Lavrador P., Esteves M.R., Gaspar V.M., Mano J.F. Stimuli-Responsive Nanocomposite Hydrogels for Biomedical Applications. Adv. Funct. Mater. 2020;2020:2005941. doi: 10.1002/adfm.202005941. DOI
Sionkowska A., Gadomska M., Musiał K., Piątek J. Hyaluronic Acid as a Component of Natural Polymer Blends for Biomedical Applications: A Review. Molecules. 2020;25:4035. doi: 10.3390/molecules25184035. PubMed DOI PMC
Zhong W., Pang L., Feng H., Dong H., Wang S., Cong H., Shen Y., Bing Y. Recent advantage of hyaluronic acid for anti-cancer application: A review of “3S” transition approach. Carbohydr. Polym. 2020;238:116204. doi: 10.1016/j.carbpol.2020.116204. PubMed DOI
Bayer I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules. 2020;25:2649. doi: 10.3390/molecules25112649. PubMed DOI PMC
Vasvani S., Kulkarni P., Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol. 2020;151:1012–1029. doi: 10.1016/j.ijbiomac.2019.11.066. PubMed DOI
Später T., Mariyanats A.O., Syachina M.A., Mironov A.V., Savelyev A.G., Sochilina A.V., Menger M.D., Vishnyakova P.A., Kananykhina E.Y., Fatkhudinov T.K., et al. In Vitro and in Vivo Analysis of Adhesive, Anti-Inflammatory, and Proangiogenic Properties of Novel 3D Printed Hyaluronic Acid Glycidyl Methacrylate Hydrogel Scaffolds for Tissue Engineering. ACS Biomater. Sci. Eng. 2020;6:5744–5757. doi: 10.1021/acsbiomaterials.0c00741. PubMed DOI
Maiz-Fernández S., Pérez-Álvarez L., Ruiz-Rubio L., Vilas-Vilela J.L., Lanceros-Mendez S. Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. Polymers. 2020;12:2261. doi: 10.3390/polym12102261. PubMed DOI PMC
Sionkowska A., Adamiak K., Musiał K., Gadomska M. Collagen Based Materials in Cosmetic Applications: A Review. Materials. 2020;13:4217. doi: 10.3390/ma13194217. PubMed DOI PMC
Bhattacharya S., Shunmugam R. Polymer based gels and their applications in remediation of dyes from textile effluents. J. Macromol. Sci. Part. A. 2020;57:906–926. doi: 10.1080/10601325.2020.1782229. DOI
Veríssimo L.M.P., Valada T.I.C., Sobral A.J.F.N., Azevedo E.E.F.G., Azevedo M.L.G., Ribeiro A.C.F. Mutual diffusion of sodium hyaluranate in aqueous solutions. J. Chem. Thermodyn. 2014;71:14–18. doi: 10.1016/j.jct.2013.11.019. DOI
Mráček A., Gřundělová L., Minařík A., Veríssimo L., Barros M., Ribeiro A. Characterization at 25 °C of Sodium Hyaluronate in Aqueous Solutions Obtained by Transport Techniques. Molecules. 2015;20:5812–5824. doi: 10.3390/molecules20045812. PubMed DOI PMC
Wik K.-O., Comper W.D. Hyaluronate diffusion in semidilute solutions. Biopolymers. 1982;21:583–599. doi: 10.1002/bip.360210308. PubMed DOI
Musilová L., Kašpárková V., Mráček A., Minařík A., Minařík M. The behaviour of hyaluronan solutions in the presence of Hofmeister ions: A light scattering, viscometry and surface tension study. Carbohydr. Polym. 2019;212:395–402. doi: 10.1016/j.carbpol.2019.02.032. PubMed DOI
Vlachy N., Jagoda-Cwiklik B., Vácha R., Touraud D., Jungwirth P., Kunz W. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 2009;146:42–47. doi: 10.1016/j.cis.2008.09.010. PubMed DOI
Zhang Y., Cremer P. Interactions between macromolecules and ions: The Hofmeister series. Curr. Opin. Chem. Biol. 2006;10:658–663. doi: 10.1016/j.cbpa.2006.09.020. PubMed DOI
Leontidis E. Investigations of the Hofmeister series and other specific ion effects using lipid model systems. Adv. Colloid Interface Sci. 2017;243:8–22. doi: 10.1016/j.cis.2017.04.001. PubMed DOI
Budroni M.A., Rossi F., Wodlei F., Marchettini N., Lo Nostro P., Rustici M. Hofmeister effect in self-organised chemical systems. J. Phys. Chem. C. 2020 doi: 10.1021/acs.jpcb.0c06956. PubMed DOI
Sarri F., Tatini D., Tanini D., Simonelli M., Ambrosi M., Ninham B.W., Capperucci A., Dei L., Lo Nostro P. Specific ion effects in non-aqueous solvents: The case of glycerol carbonate. J. Mol. Liq. 2018;266:711–717. doi: 10.1016/j.molliq.2018.06.120. DOI
Mazzini V., Liu G., Craig V.S.J. Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents. J. Chem. Phys. 2018;148:222805. doi: 10.1063/1.5017278. PubMed DOI
Mráček A., Varhaníková J., Lehocký M., Gřundělová L., Pokopcová A., Velebný V. The Influence of Hofmeister Series Ions on Hyaluronan Swelling and Viscosity. Molecules. 2008;13:1025–1034. doi: 10.3390/molecules13051025. PubMed DOI PMC
Mráček A. The Measurement of Polymer Swelling Processes by an Interferometric Method and Evaluation of Diffusion Coefficients. Int. J. Mol. Sci. 2010;11:532–543. doi: 10.3390/ijms11020532. PubMed DOI PMC
Mráček A., Benešová K., Minařík A., Urban P., Lapčík L. The diffusion process of sodium hyaluronate (Na-Ha) and Na-Ha-n-alkyl derivatives films swelling. J. Biomed. Mater. Res. Part. A. 2007;83A:184–190. doi: 10.1002/jbm.a.31188. PubMed DOI
Kunz W. Specific ion effects in colloidal and biological systems. Curr. Opin. Colloid Interface Sci. 2010;15:34–39. doi: 10.1016/j.cocis.2009.11.008. DOI
Bastos-González D., Pérez-Fuentes L., Drummond C., Faraudo J. Ions at interfaces: The central role of hydration and hydrophobicity. Curr. Opin. Colloid Interface Sci. 2016;23:19–28. doi: 10.1016/j.cocis.2016.05.010. DOI
Walstra P. Physical Chemistry of Foods. CRC Press; Boca Raton, FL, USA: 2002.
Cowman M.K., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI
Applebey M.P. CCXI—The viscosity of salt solutions. J. Chem. Soc. Trans. 1910;97:2000–2025. doi: 10.1039/CT9109702000. DOI
Tyrrell H.J.V., Harris K.R. Diffusion in Liquids: A Theoretical and Experimental Study. Butterworth; London, UK: 1984.
Harned H., Owen B. The Physical Chemistry of Electrolytic Solutions. 3rd ed. Reinholds; New York, NY, USA: 1964.
Barthel J., Gores H.J., Lohr C.M., Seidl J.J. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J. Solut. Chem. 1996;25:921–935. doi: 10.1007/BF00972589. DOI
Callendar R., Leaist D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006;35:353–379. doi: 10.1007/s10953-005-9000-2. DOI
Price W.E. Theory of the taylor dispersion technique for three-component-system diffusion measurements. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases. 1988;84:2431. doi: 10.1039/f19888402431. DOI
Deng Z., Leaist D.G. Ternary mutual diffusion coefficients of MgCl2 + MgSO4 + H2O and Na2SO4 + MgSO4 + H2O from Taylor dispersion profiles. Can. J. Chem. 1991;69:1548–1553. doi: 10.1139/v91-229. DOI
Galindres D.M., Ribeiro A.C.F., Esteso M.A., Vargas E.F., Leaist D.G., Rodrigo M.M. The effects of sodium chloride on the diffusion of sulfonated resorcinarenes in aqueous solutions. Fluid Phase Equilib. 2020;518:112629. doi: 10.1016/j.fluid.2020.112629. DOI
Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties