Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate

. 2021 Feb 16 ; 22 (4) : . [epub] 20210216

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33669232

Grantová podpora
UID/QUI/00313/2020 Fundação para a Ciência e a Tecnologia
RP/CPS/2020/003 Ministry of Education, Youth and Sports of the Czech Republic DKRVO

Tracer diffusion coefficients obtained from the Taylor dispersion technique at 25.0 °C were measured to study the influence of sodium, ammonium and magnesium salts at 0.01 and 0.1 mol dm-3 on the transport behavior of sodium hyaluronate (NaHy, 0.1%). The selection of these salts was based on their position in Hofmeister series, which describe the specific influence of different ions (cations and anions) on some physicochemical properties of a system that can be interpreted as a salting-in or salting-out effect. In our case, in general, an increase in the ionic strength (i.e., concentrations at 0.01 mol dm-3) led to a significant decrease in the limiting diffusion coefficient of the NaHy 0.1%, indicating, in those circumstances, the presence of salting-in effects. However, the opposite effect (salting-out) was verified with the increase in concentration of some salts, mainly for NH4SCN at 0.1 mol dm-3. In this particular salt, the cation is weakly hydrated and, consequently, its presence does not favor interactions between NaHy and water molecules, promoting, in those circumstances, less resistance to the movement of NaHy and thus to the increase of its diffusion (19%). These data, complemented by viscosity measurements, permit us to have a better understanding about the effect of these salts on the transport behaviour of NaHy.

Zobrazit více v PubMed

Meyer K., Palmer J. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934;107:629–640. doi: 10.1016/S0021-9258(18)75338-6. DOI

Garg H., Hales C., editors. Chemistry and Biology of Hyaluronan. Elsevier Ltd.; Amsterdam, The Netherlands: 2004.

McDonald J.N., Levick J.R. Effect of intra-articular hyaluronan on pressure-flow relation across synovium in anaesthetized rabbits. J. Physiol. 1995;485:179–193. doi: 10.1113/jphysiol.1995.sp020722. PubMed DOI PMC

Coleman P.J., Scott D., Mason R.M., Levick J.R. Characterization of the effect of high molecular weight hyaluronan on trans-synovial flow in rabbit knees. J. Physiol. 1999;514:265–282. doi: 10.1111/j.1469-7793.1999.265af.x. PubMed DOI PMC

Choi J.H., Kim J.S., Kim W.K., Lee W., Kim N., Song C.U., Jung J.J., Song J.E., Khang G. Evaluation of Hyaluronic Acid/Agarose Hydrogel for Cartilage Tissue Engineering Biomaterial. Macromol. Res. 2020;28:979–985. doi: 10.1007/s13233-020-8137-6. DOI

Huynh A., Priefer R. Hyaluronic acid applications in ophthalmology, rheumatology, and dermatology. Carbohydr. Res. 2020;489:107950. doi: 10.1016/j.carres.2020.107950. PubMed DOI

Azevedo E.F.G., Azevedo M.L.G., Ribeiro A.C.F., Mráček A., Gřundĕlová L., Minařík A. Hyaluronic acid transport properties and its medical applications in voice disorders. In: Hagui R., Torrens F., editors. Innovations in Physical Chemistry: Monograph Serie, Engineering Technology and Industrial Chemistry with Applications. Apple Academic Press; Palm Bay, FL, USA: 2018.

Lavrador P., Esteves M.R., Gaspar V.M., Mano J.F. Stimuli-Responsive Nanocomposite Hydrogels for Biomedical Applications. Adv. Funct. Mater. 2020;2020:2005941. doi: 10.1002/adfm.202005941. DOI

Sionkowska A., Gadomska M., Musiał K., Piątek J. Hyaluronic Acid as a Component of Natural Polymer Blends for Biomedical Applications: A Review. Molecules. 2020;25:4035. doi: 10.3390/molecules25184035. PubMed DOI PMC

Zhong W., Pang L., Feng H., Dong H., Wang S., Cong H., Shen Y., Bing Y. Recent advantage of hyaluronic acid for anti-cancer application: A review of “3S” transition approach. Carbohydr. Polym. 2020;238:116204. doi: 10.1016/j.carbpol.2020.116204. PubMed DOI

Bayer I.S. Hyaluronic Acid and Controlled Release: A Review. Molecules. 2020;25:2649. doi: 10.3390/molecules25112649. PubMed DOI PMC

Vasvani S., Kulkarni P., Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol. 2020;151:1012–1029. doi: 10.1016/j.ijbiomac.2019.11.066. PubMed DOI

Später T., Mariyanats A.O., Syachina M.A., Mironov A.V., Savelyev A.G., Sochilina A.V., Menger M.D., Vishnyakova P.A., Kananykhina E.Y., Fatkhudinov T.K., et al. In Vitro and in Vivo Analysis of Adhesive, Anti-Inflammatory, and Proangiogenic Properties of Novel 3D Printed Hyaluronic Acid Glycidyl Methacrylate Hydrogel Scaffolds for Tissue Engineering. ACS Biomater. Sci. Eng. 2020;6:5744–5757. doi: 10.1021/acsbiomaterials.0c00741. PubMed DOI

Maiz-Fernández S., Pérez-Álvarez L., Ruiz-Rubio L., Vilas-Vilela J.L., Lanceros-Mendez S. Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. Polymers. 2020;12:2261. doi: 10.3390/polym12102261. PubMed DOI PMC

Sionkowska A., Adamiak K., Musiał K., Gadomska M. Collagen Based Materials in Cosmetic Applications: A Review. Materials. 2020;13:4217. doi: 10.3390/ma13194217. PubMed DOI PMC

Bhattacharya S., Shunmugam R. Polymer based gels and their applications in remediation of dyes from textile effluents. J. Macromol. Sci. Part. A. 2020;57:906–926. doi: 10.1080/10601325.2020.1782229. DOI

Veríssimo L.M.P., Valada T.I.C., Sobral A.J.F.N., Azevedo E.E.F.G., Azevedo M.L.G., Ribeiro A.C.F. Mutual diffusion of sodium hyaluranate in aqueous solutions. J. Chem. Thermodyn. 2014;71:14–18. doi: 10.1016/j.jct.2013.11.019. DOI

Mráček A., Gřundělová L., Minařík A., Veríssimo L., Barros M., Ribeiro A. Characterization at 25 °C of Sodium Hyaluronate in Aqueous Solutions Obtained by Transport Techniques. Molecules. 2015;20:5812–5824. doi: 10.3390/molecules20045812. PubMed DOI PMC

Wik K.-O., Comper W.D. Hyaluronate diffusion in semidilute solutions. Biopolymers. 1982;21:583–599. doi: 10.1002/bip.360210308. PubMed DOI

Musilová L., Kašpárková V., Mráček A., Minařík A., Minařík M. The behaviour of hyaluronan solutions in the presence of Hofmeister ions: A light scattering, viscometry and surface tension study. Carbohydr. Polym. 2019;212:395–402. doi: 10.1016/j.carbpol.2019.02.032. PubMed DOI

Vlachy N., Jagoda-Cwiklik B., Vácha R., Touraud D., Jungwirth P., Kunz W. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 2009;146:42–47. doi: 10.1016/j.cis.2008.09.010. PubMed DOI

Zhang Y., Cremer P. Interactions between macromolecules and ions: The Hofmeister series. Curr. Opin. Chem. Biol. 2006;10:658–663. doi: 10.1016/j.cbpa.2006.09.020. PubMed DOI

Leontidis E. Investigations of the Hofmeister series and other specific ion effects using lipid model systems. Adv. Colloid Interface Sci. 2017;243:8–22. doi: 10.1016/j.cis.2017.04.001. PubMed DOI

Budroni M.A., Rossi F., Wodlei F., Marchettini N., Lo Nostro P., Rustici M. Hofmeister effect in self-organised chemical systems. J. Phys. Chem. C. 2020 doi: 10.1021/acs.jpcb.0c06956. PubMed DOI

Sarri F., Tatini D., Tanini D., Simonelli M., Ambrosi M., Ninham B.W., Capperucci A., Dei L., Lo Nostro P. Specific ion effects in non-aqueous solvents: The case of glycerol carbonate. J. Mol. Liq. 2018;266:711–717. doi: 10.1016/j.molliq.2018.06.120. DOI

Mazzini V., Liu G., Craig V.S.J. Probing the Hofmeister series beyond water: Specific-ion effects in non-aqueous solvents. J. Chem. Phys. 2018;148:222805. doi: 10.1063/1.5017278. PubMed DOI

Mráček A., Varhaníková J., Lehocký M., Gřundělová L., Pokopcová A., Velebný V. The Influence of Hofmeister Series Ions on Hyaluronan Swelling and Viscosity. Molecules. 2008;13:1025–1034. doi: 10.3390/molecules13051025. PubMed DOI PMC

Mráček A. The Measurement of Polymer Swelling Processes by an Interferometric Method and Evaluation of Diffusion Coefficients. Int. J. Mol. Sci. 2010;11:532–543. doi: 10.3390/ijms11020532. PubMed DOI PMC

Mráček A., Benešová K., Minařík A., Urban P., Lapčík L. The diffusion process of sodium hyaluronate (Na-Ha) and Na-Ha-n-alkyl derivatives films swelling. J. Biomed. Mater. Res. Part. A. 2007;83A:184–190. doi: 10.1002/jbm.a.31188. PubMed DOI

Kunz W. Specific ion effects in colloidal and biological systems. Curr. Opin. Colloid Interface Sci. 2010;15:34–39. doi: 10.1016/j.cocis.2009.11.008. DOI

Bastos-González D., Pérez-Fuentes L., Drummond C., Faraudo J. Ions at interfaces: The central role of hydration and hydrophobicity. Curr. Opin. Colloid Interface Sci. 2016;23:19–28. doi: 10.1016/j.cocis.2016.05.010. DOI

Walstra P. Physical Chemistry of Foods. CRC Press; Boca Raton, FL, USA: 2002.

Cowman M.K., Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022. PubMed DOI

Applebey M.P. CCXI—The viscosity of salt solutions. J. Chem. Soc. Trans. 1910;97:2000–2025. doi: 10.1039/CT9109702000. DOI

Tyrrell H.J.V., Harris K.R. Diffusion in Liquids: A Theoretical and Experimental Study. Butterworth; London, UK: 1984.

Harned H., Owen B. The Physical Chemistry of Electrolytic Solutions. 3rd ed. Reinholds; New York, NY, USA: 1964.

Barthel J., Gores H.J., Lohr C.M., Seidl J.J. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J. Solut. Chem. 1996;25:921–935. doi: 10.1007/BF00972589. DOI

Callendar R., Leaist D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006;35:353–379. doi: 10.1007/s10953-005-9000-2. DOI

Price W.E. Theory of the taylor dispersion technique for three-component-system diffusion measurements. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases. 1988;84:2431. doi: 10.1039/f19888402431. DOI

Deng Z., Leaist D.G. Ternary mutual diffusion coefficients of MgCl2 + MgSO4 + H2O and Na2SO4 + MgSO4 + H2O from Taylor dispersion profiles. Can. J. Chem. 1991;69:1548–1553. doi: 10.1139/v91-229. DOI

Galindres D.M., Ribeiro A.C.F., Esteso M.A., Vargas E.F., Leaist D.G., Rodrigo M.M. The effects of sodium chloride on the diffusion of sulfonated resorcinarenes in aqueous solutions. Fluid Phase Equilib. 2020;518:112629. doi: 10.1016/j.fluid.2020.112629. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace