Patient-Specific Network Connectivity Combined With a Next Generation Neural Mass Model to Test Clinical Hypothesis of Seizure Propagation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34539355
PubMed Central
PMC8440880
DOI
10.3389/fnsys.2021.675272
Knihovny.cz E-zdroje
- Klíčová slova
- epileptic seizure-like event, neural mass model, patient-specific brain network model, quadratic integrate-and-fire neuron, topological network measure,
- Publikační typ
- časopisecké články MeSH
Dynamics underlying epileptic seizures span multiple scales in space and time, therefore, understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. In this view, mathematical models have been developed, ranging from single neuron to neural population. In this study, we consider a neural mass model able to exactly reproduce the dynamics of heterogeneous spiking neural networks. We combine mathematical modeling with structural information from non invasive brain imaging, thus building large-scale brain network models to explore emergent dynamics and test the clinical hypothesis. We provide a comprehensive study on the effect of external drives on neuronal networks exhibiting multistability, in order to investigate the role played by the neuroanatomical connectivity matrices in shaping the emergent dynamics. In particular, we systematically investigate the conditions under which the network displays a transition from a low activity regime to a high activity state, which we identify with a seizure-like event. This approach allows us to study the biophysical parameters and variables leading to multiple recruitment events at the network level. We further exploit topological network measures in order to explain the differences and the analogies among the subjects and their brain regions, in showing recruitment events at different parameter values. We demonstrate, along with the example of diffusion-weighted magnetic resonance imaging (dMRI) connectomes of 20 healthy subjects and 15 epileptic patients, that individual variations in structural connectivity, when linked with mathematical dynamic models, have the capacity to explain changes in spatiotemporal organization of brain dynamics, as observed in network-based brain disorders. In particular, for epileptic patients, by means of the integration of the clinical hypotheses on the epileptogenic zone (EZ), i.e., the local network where highly synchronous seizures originate, we have identified the sequence of recruitment events and discussed their links with the topological properties of the specific connectomes. The predictions made on the basis of the implemented set of exact mean-field equations turn out to be in line with the clinical pre-surgical evaluation on recruited secondary networks.
Aix Marseille Université Inserm Institut de Neurosciences des Systèmes UMRS 1106 Marseille France
Assistance Publique Hôpitaux de Marseille Hôpital de la Timone Pôle d'Imagerie Marseille France
Consiglio Nazionale delle Ricerche Istituto dei Sistemi Complessi Sesto Fiorentino Italy
Inria Sophia Antipolis Méditerranée Research Centre MathNeuro Team Valbonne France
Institut für Theoretische Physik Technische Universität Berlin Berlin Germany
Institute of Computer Science of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Ahmadi M. E., Hagler D., McDonald C. R., Tecoma E., Iragui V., Dale A. M., et al. . (2009). Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. Am. J. Neuroradiol. 30, 1740–1747. 10.3174/ajnr.A1650 PubMed DOI PMC
Ahmadizadeh S., Karoly P. J., Nešić D., Grayden D. B., Cook M. J., Soudry D., et al. . (2018). Bifurcation analysis of two coupled jansen-rit neural mass models. PLoS ONE. 13:e0192842. 10.1371/journal.pone.0192842 PubMed DOI PMC
Allen P., Fish D., Smith S. (1992). Very high-frequency rhythmic activity during seeg suppression in frontal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 82, 155–159. 10.1016/0013-4694(92)90160-J PubMed DOI
Aoki F., Fetz E., Shupe L., Lettich E., Ojemann G. (1999). Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin. Neurophysiol. 110, 524–537. 10.1016/S1388-2457(98)00064-9 PubMed DOI
Aoki F., Fetz E., Shupe L., Lettich E., Ojemann G. (2001). Changes in power and coherence of brain activity in human sensorimotor cortex during performance of visuomotor tasks. Biosystems 63, 89–99. 10.1016/S0303-2647(01)00149-6 PubMed DOI
Baier G., Goodfellow M., Taylor P. N., Wang Y., Garry D. J. (2012). The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Front. Physiol. 3:281. 10.3389/fphys.2012.00281 PubMed DOI PMC
Banks M. I., White J. A., Pearce R. A. (2000). Interactions between distinct gabaa circuits in hippocampus. Neuron 25, 449–457. 10.1016/S0896-6273(00)80907-1 PubMed DOI
Barrat A., Barthélemy M., Pastor-Satorras R., Vespignani A. (2004). The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101, 3747–3752. 10.1073/pnas.0400087101 PubMed DOI PMC
Bartolomei F., Guye M., Gavaret M., Regis J., Wendling F., Raybaud C., et al. . (2002). The presurgical evaluation of epilepsies. Revue Neurol. 158(5 Pt 2):4S55–4S64. PubMed
Bartolomei F., Guye M., Wendling F. (2013). Abnormal binding and disruption in large scale networks involved in human partial seizures. EPJ Nonlinear Biomed. Phys. 1, 4. 10.1140/epjnbp11 DOI
Bartolomei F., Lagarde S., Wendling F., McGonigal A., Jirsa V., Guye M., et al. . (2017). Defining epileptogenic networks: contribution of seeg and signal analysis. Epilepsia 58, 1131–1147. 10.1111/epi.13791 PubMed DOI
Bartolomei F., Wendling F., Bellanger J.-J., Régis J., Chauvel P. (2001). Neural networks involving the medial temporal structures in temporal lobe epilepsy. Clin. Neurophysiol. 112, 1746–1760. 10.1016/S1388-2457(01)00591-0 PubMed DOI
Basser P. J., Pajevic S., Pierpaoli C., Duda J., Aldroubi A. (2000). In vivo fiber tractography using dt-mri data. Magn. Reson. Med. 44, 625–632. 10.1002/1522-2594(200010)44:4andlt;625::AID-MRM17andgt;3.0.CO;2-O PubMed DOI
Bazhenov M., Timofeev I., Fröhlich F., Sejnowski T. J. (2008). Cellular and network mechanisms of electrographic seizures. Drug Discov. Today Dis. Models 5, 45–57. 10.1016/j.ddmod.2008.07.005 PubMed DOI PMC
Bernhardt B., Hong S.-J., Bernasconi A., Bernasconi N. (2013). Imaging structural and functional brain networks in temporal lobe epilepsy. Front. Hum. Neurosci. 7:624. 10.3389/fnhum.2013.00624 PubMed DOI PMC
Besson P., Bandt S. K., Proix T., Lagarde S., Jirsa V. K., Ranjeva J.-P., et al. . (2017). Anatomic consistencies across epilepsies: a stereotactic-eeg informed high-resolution structural connectivity study. Brain 140, 2639–2652. 10.1093/brain/awx181 PubMed DOI
Besson P., Dinkelacker V., Valabregue R., Thivard L., Leclerc X., Baulac M., et al. . (2014). Structural connectivity differences in left and right temporal lobe epilepsy. Neuroimage 100:135–144. 10.1016/j.neuroimage.2014.04.071 PubMed DOI
Bettus G., Guedj E., Joyeux F., Confort-Gouny S., Soulier E., Laguitton V., et al. . (2009). Decreased basal fmri functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum. Brain Mapp. 30, 1580–1591. 10.1002/hbm.20625 PubMed DOI PMC
Bhattacharya B. S., Chowdhury F. N. (2015). Validating Neuro-Computational Models of Neurological and Psychiatric Disorders, Vol. 14. Cham: Springer.
Bi H., Segneri M., di Volo M., Torcini A. (2020). Coexistence of fast and slow gamma oscillations in one population of inhibitory spiking neurons. Phys. Rev. Res. 2, 013042. 10.1103/PhysRevResearch.2.013042 DOI
Bittar R. G., Olivier A., Sadikot A. F., Andermann F., Comeau R. M., Cyr M., et al. . (1999). Localization of somatosensory function by using positron emission tomography scanning: a comparison with intraoperative cortical stimulation. J Neurosurg. 90, 478–483. 10.3171/jns.1999.90.3.0478 PubMed DOI
Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D.-U. (2006). Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308. 10.1016/j.physrep.2005.10.009 DOI
Bojak I., Breakspear M. (2014). Neuroimaging, Neural Population Models for. New York, NY: Springer.
Bonilha L., Nesland T., Martz G. U., Joseph J. E., Spampinato M. V., Edwards J. C., et al. . (2012). Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures. J. Neurol. Neurosurg. Psychiatry 83, 903–909. 10.1136/jnnp-2012-302476 PubMed DOI PMC
Breakspear M., Jirsa V. K. (2007). Neuronal dynamics and brain connectivity, in Handbook of Brain Connectivity, eds V. K. Jirsa and A. McIntosh (Berlin; Heidelberg: Springer), 3–64.
Brocke E., Bhalla U. S., Djurfeldt M., Hellgren Kotaleski J., Hanke M. (2016). Efficient integration of coupled electrical-chemical systems in multiscale neuronal simulations. Front. Comput. Neurosci. 10:97. 10.3389/fncom.2016.00097 PubMed DOI PMC
Brunner P., Ritaccio A. L., Lynch T. M., Emrich J. F., Wilson J. A., Williams J. C., et al. . (2009). A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav. 15, 278–286. 10.1016/j.yebeh.2009.04.001 PubMed DOI PMC
Byrne Á., O'Dea R. D., Forrester M., Ross J., Coombes S. (2020). Next-generation neural mass and field modeling. J. Neurophysiol. 123, 726–742. 10.1152/jn.00406.2019 PubMed DOI
Cabral J., Fernandes H., Van Hartevelt T., James A., Kringelbach M. (2013). Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks. Chaos 23, 046111. 10.1063/1.4851117 PubMed DOI
Cassidy R. M., Gale K. (1998). Mediodorsal thalamus plays a critical role in the development of limbic motor seizures. J. Neurosci. 18, 9002–9009. 10.1523/JNEUROSCI.18-21-09002.1998 PubMed DOI PMC
Ceni A., Olmi S., Torcini A., Angulo-Garcia D. (2020). Cross frequency coupling in next generation inhibitory neural mass models. Chaos 30, 053121. 10.1063/1.5125216 PubMed DOI
Chakraborty A., McEvoy A. W. (2008). Presurgical functional mapping with functional mri. Curr. Opin. Neurol. 21, 446–451. 10.1097/WCO.0b013e32830866e2 PubMed DOI
Chizhov A. V., Zefirov A. V., Amakhin D. V., Smirnova E. Y., Zaitsev A. V. (2018). Minimal model of interictal and ictal discharges "epileptor-2". PLoS Comput. Biol. 14:e1006186. 10.1371/journal.pcbi.1006186 PubMed DOI PMC
Chouzouris T., Omelchenko I., Zakharova A., Hlinka J., Jiruska P., Schöll E. (2018). Chimera states in brain networks: empirical neural vs. modular fractal connectivity. Chaos 28, 045112. 10.1063/1.5009812 PubMed DOI
Compte A., Sanchez-Vives M. V., McCormick D. A., Wang X.-J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 hz) and wave propagations in a cortical network model. J. Neurophysiol. 89, 2707–2725. 10.1152/jn.00845.2002 PubMed DOI
Coombes S., Byrne A. (2019). Next generation neural mass models, in Nonlinear Dynamics in Computational Neuroscience, eds F. Corinto and A. Torcini (Cham: Springer; ), 1–16.
Cossart R., Dinocourt C., Hirsch J., Merchan-Perez A., De Felipe J., Ben-Ari Y., et al. . (2001). Dendritic but not somatic gabaergic inhibition is decreased in experimental epilepsy. Nat. Neurosci. 4, 52–62. 10.1038/82900 PubMed DOI
Creaser J., Lin C., Ridler T., Brown J. T., D'Souza W., Seneviratne U., et al. . (2020). Domino-like transient dynamics at seizure onset in epilepsy. PLoS Comput. Biol. 16:e1008206. 10.1371/journal.pcbi.1008206 PubMed DOI PMC
Cressman J. R., Ullah G., Ziburkus J., Schiff S. J., Barreto E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics. J. Comput. Neurosci. 26, 159–170. 10.1007/s10827-008-0132-4 PubMed DOI PMC
Crone N. E., Boatman D., Gordon B., Hao L. (2001). Induced electrocorticographic gamma activity during auditory perception. Clin. Neurophysiol. 112, 565–582. 10.1016/S1388-2457(00)00545-9 PubMed DOI
Crone N. E., Miglioretti D. L., Gordon B., Lesser R. P. (1998a). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. ii. event-related synchronization in the gamma band. Brain 121, 2301–2315. 10.1093/brain/121.12.2301 PubMed DOI
Crone N. E., Miglioretti D. L., Gordon B., Sieracki J. M., Wilson M. T., Uematsu S., et al. . (1998b). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. i. alpha and beta event-related desynchronization. Brain 121, 2271–2299. 10.1093/brain/121.12.2271 PubMed DOI
Da Silva F. L., Hoeks A., Smits H., Zetterberg L. (1974). Model of brain rhythmic activity. Kybernetik 15, 27–37. 10.1007/BF00270757 PubMed DOI
Da Silva F. L., Van Rotterdam A., Barts P., Van Heusden E., Burr W. (1976). Models of neuronal populations: the basic mechanisms of rhythmicity. Progr. Brain Res. 45, 281–308. PubMed
David O., Blauwblomme T., Job A.-S., Chabardès S., Hoffmann D., Minotti L., et al. . (2011). Imaging the seizure onset zone with stereo-electroencephalography. Brain 134, 2898–2911. 10.1093/brain/awr238 PubMed DOI
De Tisi J., Bell G. S., Peacock J. L., McEvoy A. W., Harkness W. F., Sander J. W., et al. . (2011). The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 378, 1388–1395. 10.1016/S0140-6736(11)60890-8 PubMed DOI
Deco G., Jirsa V. K., McIntosh A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56. 10.1038/nrn2961 PubMed DOI
DeSalvo M. N., Douw L., Tanaka N., Reinsberger C., Stufflebeam S. M. (2014). Altered structural connectome in temporal lobe epilepsy. Radiology. 270, 842–848. 10.1148/radiol.13131044 PubMed DOI PMC
Desikan R. S., Ségonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., et al. . (2006). An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. Neuroimage. 31, 968–980. 10.1016/j.neuroimage.2006.01.021 PubMed DOI
Destexhe A., Sejnowski T. J. (1995). G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. Proc. Natl. Acad. Sci. U.S.A. 92, 9515–9519. 10.1073/pnas.92.21.9515 PubMed DOI PMC
Devalle F., Montbrió E., Pazó D. (2018). Dynamics of a large system of spiking neurons with synaptic delay. Phys. Rev. E 98, 042214. 10.1103/PhysRevE.98.042214 DOI
Devalle F., Roxin A., Montbrió E. (2017). Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks. PLoS Comput. Biol. 13:e1005881. 10.1371/journal.pcbi.1005881 PubMed DOI PMC
di Volo M., Torcini A. (2018). Transition from asynchronous to oscillatory dynamics in balanced spiking networks with instantaneous synapses. Phys. Rev. Lett. 121, 128301. 10.1103/PhysRevLett.121.128301 PubMed DOI
Dinner D., Lüders H., Lesser R., Morris H. (1986). Invasive methods of somatosensory evoked potential monitoring. J. Clin. Neurophysiol. 3, 113–130. 10.1097/00004691-198604000-00002 PubMed DOI
Dumont G., Gutkin B. (2019). Macroscopic phase resetting-curves determine oscillatory coherence and signal transfer in inter-coupled neural circuits. PLoS Comput. Biol. 15:e1007019. 10.1371/journal.pcbi.1007019 PubMed DOI PMC
Duncan J. S., Winston G. P., Koepp M. J., Ourselin S. (2016). Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 15, 420–433. 10.1016/S1474-4422(15)00383-X PubMed DOI PMC
El Houssaini K., Bernard C., Jirsa V. K. (2020). The epileptor model: a systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus and depolarization block. eNeuro. 7:ENEURO.0485-18.2019. 10.1523/ENEURO.0485-18.2019 PubMed DOI PMC
Ermentrout G. B., Kopell N. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233–253. 10.1137/0146017 DOI
Fischl B. (2012). Freesurfer. Neuroimage 62, 774–781. 10.1016/j.neuroimage.2012.01.021 PubMed DOI PMC
Flanagan D., Valentín A., García Seoane J. J., Alarcón G., Boyd S. G. (2009). Single-pulse electrical stimulation helps to identify epileptogenic cortex in children. Epilepsia 50, 1793–1803. 10.1111/j.1528-1167.2009.02056.x PubMed DOI
Freestone D., Kuhlmann L., Chong M., Nešić D., Grayden D. B., Aram P., et al. . (2013). Patient-specific neural mass modeling-stochastic and deterministic methods, in Recent Advances in Predicting and Preventing Epileptic Seizures (Singapore: World Scientific; ), 63–82.
Fuchs A., Jirsa V. K., Kelso J. S. (2000). Theory of the relation between human brain activity (meg) and hand movements. Neuroimage. 11, 359–369. 10.1006/nimg.1999.0532 PubMed DOI
Fuhrmann S., Ackermann J., Kalbe T., Goesele M. (2010). Direct resampling for isotropic surface remeshing, in Proc. Int. Workshop Vision, Modeling, and Visualization, 9–16.
Ganslandt O., Fahlbusch R., Nimsky C., Kober H., Möller M., Steinmeier R., et al. . (1999). Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J. Neurosurg. 91, 73–79. 10.3171/jns.1999.91.1.0073 PubMed DOI
Gerster M., Berner R., Sawicki J., Zakharova A., Škoch A., Hlinka J., et al. . (2020). Fitzhugh-nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos 30, 123130. 10.1063/5.0021420 PubMed DOI
Ghosh A., Rho Y., McIntosh A. R., Kötter R., Jirsa V. K. (2008). Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol. 4:e1000196. 10.1371/journal.pcbi.1000196 PubMed DOI PMC
Goldman J., Kusch L., Hazalyalcinkaya B., Depannemaecker D., Nghiem T.-A., Jirsa V., et al. . (2020). Brain-scale emergence of slow-wave synchrony and highly responsive asynchronous states based on biologically realistic population models simulated in the virtual brain. bioRxiv. 10.1101/2020.12.28.424574 DOI
Goldobin D. S., Di Volo M., Torcini A. (2021). A reduction methodology for fluctuation driven population dynamics. arXiv preprint arXiv:2101.11679. 10.1101/2021.01.28.428565 PubMed DOI
Golomb D., Amitai Y. (1997). Propagating neuronal discharges in neocortical slices: computational and experimental study. J. Neurophysiol. 78, 1199–1211. 10.1152/jn.1997.78.3.1199 PubMed DOI
Goodfellow M., Rummel C., Abela E., Richardson M., Schindler K., Terry J. (2016). Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci Rep. 6, 1–13. 10.1038/srep29215 PubMed DOI PMC
Goodfellow M., Rummel C., Abela E., Richardson M. P., Schindler K., Terry J. R. (2017). Computer models to inform epilepsy surgery strategies: prediction of postoperative outcome. Brain 140, e30–e30. 10.1093/brain/awx067 PubMed DOI PMC
Goodfellow M., Schindler K., Baier G. (2011). Intermittent spike-wave dynamics in a heterogeneous, spatially extended neural mass model. Neuroimage 55, 920–932. 10.1016/j.neuroimage.2010.12.074 PubMed DOI
Goodfellow M., Schindler K., Baier G. (2012). Self-organised transients in a neural mass model of epileptogenic tissue dynamics. Neuroimage 59, 2644–2660. 10.1016/j.neuroimage.2011.08.060 PubMed DOI
Hall D., Kuhlmann L. (2013). Mechanisms of seizure propagation in 2-dimensional centre-surround recurrent networks. PLoS ONE. 8:e71369. 10.1371/journal.pone.0071369 PubMed DOI PMC
Hara K., Uematsu S., Lesser R., Gordon B., Hart J., Vining E. (1991). Representation of primary motor cortex in humans: studied with chronic subdural grid. Epilepsia 32(Suppl.):23–24.
Hutchings F., Han C. E., Keller S. S., Weber B., Taylor P. N., Kaiser M. (2015). Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLoS Comput. Biol. 11:e1004642. 10.1371/journal.pcbi.1004642 PubMed DOI PMC
Huys R., Perdikis D., Jirsa V. K. (2014). Functional architectures and structured flows on manifolds: a dynamical framework for motor behavior. Psychol Rev. 121, 302. 10.1037/a0037014 PubMed DOI
Jacobs J., Staba R., Asano E., Otsubo H., Wu J., Zijlmans M., et al. . (2012). High-frequency oscillations (hfos) in clinical epilepsy. Progr. Neurobiol. 98, 302–315. 10.1016/j.pneurobio.2012.03.001 PubMed DOI PMC
Jacobs J., Zijlmans M., Zelmann R., Olivier A., Hall J., Gotman J., et al. . (2010). Value of electrical stimulation and high frequency oscillations (80-500 hz) in identifying epileptogenic areas during intracranial eeg recordings. Epilepsia 51, 573–582. 10.1111/j.1528-1167.2009.02389.x PubMed DOI PMC
Jefferys J. G., Traub R. D., Whittington M. A. (1996). Neuronal networks for induced '40 hz' rhythms. Trends Neurosci. 19, 202–208. 10.1016/S0166-2236(96)10023-0 PubMed DOI
Jenkinson M., Beckmann C. F., Behrens T. E., Woolrich M. W., Smith S. M. (2012). Fsl. Neuroimage 62, 782–790. 10.1016/j.neuroimage.2011.09.015 PubMed DOI
Jirsa V., Sporns O., Breakspear M., Deco G., McIntosh A. R. (2010). Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol. 148, 189–205. 10.4449/aib.v148i3.1223 PubMed DOI
Jirsa V. K. (2008). Dispersion and time delay effects in synchronized spike-burst networks. Cogn. Neurodyn. 2, 29–38. 10.1007/s11571-007-9030-0 PubMed DOI PMC
Jirsa V. K., Jantzen K. J., Fuchs A., Kelso J. S. (2002). Spatiotemporal forward solution of the eeg and meg using network modeling. IEEE Trans. Med. Imaging 21, 493–504. 10.1109/TMI.2002.1009385 PubMed DOI
Jirsa V. K., Stacey W. C., Quilichini P. P., Ivanov A. I., Bernard C. (2014). On the nature of seizure dynamics. Brain 137, 2210–2230. 10.1093/brain/awu133 PubMed DOI PMC
Kaiser M., Goerner M., Hilgetag C. C. (2007). Criticality of spreading dynamics in hierarchical cluster networks without inhibition. New J. Phys. 9, 110. 10.1088/1367-2630/9/5/110 DOI
Kalitzin S. N., Velis D. N., da Silva F. H. L. (2010). Stimulation-based anticipation and control of state transitions in the epileptic brain. Epilepsy Behav. 17, 310–323. 10.1016/j.yebeh.2009.12.023 PubMed DOI
Karoly P. J., Kuhlmann L., Soudry D., Grayden D. B., Cook M. J., Freestone D. R. (2018). Seizure pathways: a model-based investigation. PLoS Comput. Biol. 14:e1006403. 10.1371/journal.pcbi.1006403 PubMed DOI PMC
Khadjevand F., Cimbalnik J., Worrell G. A. (2017). Progress and remaining challenges in the application of high frequency oscillations as biomarkers of epileptic brain. Curr. Opin. Biomed. Eng. 4, 87–96. 10.1016/j.cobme.2017.09.006 PubMed DOI PMC
Khambhati A. N., Davis K. A., Lucas T. H., Litt B., Bassett D. S. (2016). Virtual cortical resection reveals push-pull network control preceding seizure evolution. Neuron 91, 1170–1182. 10.1016/j.neuron.2016.07.039 PubMed DOI PMC
Kim J., Roberts J., Robinson P. (2009). Dynamics of epileptic seizures: evolution, spreading, and suppression. J. Theor. Biol. 257, 527–532. 10.1016/j.jtbi.2008.12.009 PubMed DOI
Kramer M. A., Kirsch H. E., Szeri A. J. (2005). Pathological pattern formation and cortical propagation of epileptic seizures. J. R. Soc. Interface 2, 113–127. 10.1098/rsif.2004.0028 PubMed DOI PMC
Kramer M. A., Szeri A. J., Sleigh J. W., Kirsch H. E. (2007). Mechanisms of seizure propagation in a cortical model. J. Comput. Neurosci. 22, 63–80. 10.1007/s10827-006-9508-5 PubMed DOI
Kramer M. A., Truccolo W., Eden U. T., Lepage K. Q., Hochberg L. R., Eskandar E. N., et al. . (2012). Human seizures self-terminate across spatial scales via a critical transition. Proc. Natl. Acad. Sci. U.S.A. 109, 21116–21121. 10.1073/pnas.1210047110 PubMed DOI PMC
Kringelbach M. L., Cruzat J., Cabral J., Knudsen G. M., Carhart-Harris R., Whybrow P. C., et al. . (2020). Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc. Natl. Acad. Sci. U.S.A. 117, 9566–9576. 10.1073/pnas.1921475117 PubMed DOI PMC
Kunze T., Hunold A., Haueisen J., Jirsa V., Spiegler A. (2016). Transcranial direct current stimulation changes resting state functional connectivity: a large-scale brain network modeling study. Neuroimage 140:174–187. 10.1016/j.neuroimage.2016.02.015 PubMed DOI
Kwan P., Brodie M. J. (2000). Early identification of refractory epilepsy. New Engl. J. Med. 342, 314–319. 10.1056/NEJM200002033420503 PubMed DOI
Laing C. R. (2017). Phase oscillator network models of brain dynamics. Comput. Models Brain Behav. 505:517. 10.1002/9781119159193.ch37 DOI
Lecrubier Y., Sheehan D. V., Weiller E., Amorim P., Bonora I., Sheehan K. H., et al. . (1997). The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur. Psychiatry 12, 224–231. 10.1016/S0924-9338(97)83296-8 DOI
Leuthardt E. C., Miller K., Anderson N. R., Schalk G., Dowling J., Miller J., et al. . (2007). Electrocorticographic frequency alteration mapping: a clinical technique for mapping the motor cortex. Operat. Neurosurg. 60(Suppl_4):ONS-260. 10.1227/01.NEU.0000255413.70807.6E PubMed DOI
Leyden K. M., Kucukboyaci N. E., Puckett O. K., Lee D., Loi R. Q., Paul B., et al. . (2015). What does diffusion tensor imaging (dti) tell us about cognitive networks in temporal lobe epilepsy? Quant. Imaging Med. Surg. 5, 247. 10.3978/j.issn.2223-4292.2015.02.01 PubMed DOI PMC
Lieb J. P., Dasheiff R. M., Engel J., Genton P., Genton P. (1991). Role of the frontal lobes in the propagation of mesial temporal lobe seizures. Epilepsia 32, 822–837. 10.1111/j.1528-1157.1991.tb05539.x PubMed DOI
Lieb J. P., Hoque K., Skomer C. E., Song X.-W. (1987). Inter-hemispheric propagation of human mesial temporal lobe seizures: a coherence/phase analysis. Electroencephalogr. Clin. Neurophysiol. 67, 101–119. 10.1016/0013-4694(87)90033-2 PubMed DOI
Lindroos R., Dorst M. C., Du K., Filipović M., Keller D., Ketzef M., et al. . (2018). Basal ganglia neuromodulation over multiple temporal and structural scales simulations of direct pathway msns investigate the fast onset of dopaminergic effects and predict the role of kv4. 2. Front. Neural Circ. 12:3. 10.3389/fncir.2018.00003 PubMed DOI PMC
Lopes M. A., Goodfellow M., Terry J. R. (2019). A model-based assessment of the seizure onset zone predictive power to inform the epileptogenic zone. Front. Comput. Neurosci. 13:25. 10.3389/fncom.2019.00025 PubMed DOI PMC
Lopes M. A., Junges L., Woldman W., Goodfellow M., Terry J. R. (2020). The role of excitability and network structure in the emergence of focal and generalized seizures. Front. Neurol. 11:74. 10.3389/fneur.2020.00074 PubMed DOI PMC
Lopes M. A., Richardson M. P., Abela E., Rummel C., Schindler K., Goodfellow M., et al. . (2017). An optimal strategy for epilepsy surgery: disruption of the rich-club? PLoS Comput. Biol. 13:e1005637. 10.1371/journal.pcbi.1005637 PubMed DOI PMC
Lopour B. A., Szeri A. J. (2010). A model of feedback control for the charge-balanced suppression of epileptic seizures. J. Comput. Neurosci. 28, 375–387. 10.1007/s10827-010-0215-x PubMed DOI PMC
Luccioli S., Ben-Jacob E., Barzilai A., Bonifazi P., Torcini A. (2014). Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks. PLoS Comput. Biol. 10:e1003823. 10.1371/journal.pcbi.1003823 PubMed DOI PMC
Marten F., Rodrigues S., Benjamin O., Richardson M. P., Terry J. R. (2009). Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1145–1161. 10.1098/rsta.2008.0255 PubMed DOI
Melicher T., Horacek J., Hlinka J., Spaniel F., Tintera J., Ibrahim I., et al. . (2015). White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophr. Res. 162, 22–28. 10.1016/j.schres.2015.01.029 PubMed DOI
Meyer P., Sturz L., Sabri O., Schreckenberger M., Spetzger U., Setani K., et al. . (2003). Preoperative motor system brain mapping using positron emission tomography and statistical parametric mapping: hints on cortical reorganisation. J. Neurol. Neurosurg. Psychiatry 74, 471–478. 10.1136/jnnp.74.4.471 PubMed DOI PMC
Miles R., Traub R. D., Wong R. (1988). Spread of synchronous firing in longitudinal slices from the ca3 region of the hippocampus. J. Neurophysiol. 60, 1481–1496. 10.1152/jn.1988.60.4.1481 PubMed DOI
Miller K. J., Leuthardt E. C., Schalk G., Rao R. P., Anderson N. R., Moran D. W., et al. . (2007). Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432. 10.1523/JNEUROSCI.3886-06.2007 PubMed DOI PMC
Montbrió E., Pazó D. (2020). Exact mean-field theory explains the dual role of electrical synapses in collective synchronization. Phys. Rev. Lett. 125:248101. 10.1103/PhysRevLett.125.248101 PubMed DOI
Montbrió E., Pazó D., Roxin A. (2015). Macroscopic description for networks of spiking neurons. Phys. Rev. X 5:021028. 10.1103/PhysRevX.5.021028 DOI
Moran R. J., Pinotsis D. A., Friston K. J. (2013). Neural masses and fields in dynamic causal modeling. Front. Comput. Neurosci. 7:57. 10.3389/fncom.2013.00057 PubMed DOI PMC
Morgan R. J., Soltesz I. (2008). Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc. Natl. Acad. Sci. U.S.A. 105, 6179–6184. 10.1073/pnas.0801372105 PubMed DOI PMC
Najm I., Jehi L., Palmini A., Gonzalez-Martinez J., Paglioli E., Bingaman W. (2013). Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia 54, 772–782. 10.1111/epi.12152 PubMed DOI
Ojemann G. A. (1991). Cortical organization of language. J. Neurosci. 11, 2281–2287. 10.1523/JNEUROSCI.11-08-02281.1991 PubMed DOI PMC
Olmi S., Petkoski S., Guye M., Bartolomei F., Jirsa V. (2019). Controlling seizure propagation in large-scale brain networks. PLoS Comput. Biol. 15:e1006805. 10.1371/journal.pcbi.1006805 PubMed DOI PMC
Ott E., Antonsen T. M. (2008). Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18:037113. 10.1063/1.2930766 PubMed DOI
Pazó D., Montbrió E. (2016). From quasiperiodic partial synchronization to collective chaos in populations of inhibitory neurons with delay. Phys. Rev. Lett. 116, 238101. 10.1103/PhysRevLett.116.238101 PubMed DOI
Petkoski S., Jirsa V. (2020). Renormalization of the brain connectome: Duality of particle and wave. bioRxiv. 10.1101/2020.12.02.408518 DOI
Pfurtscheller G., Da Silva F. L. (1999). Event-related eeg/meg synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857. 10.1016/S1388-2457(99)00141-8 PubMed DOI
Proix T., Bartolomei F., Chauvel P., Bernard C., Jirsa V. K. (2014). Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. J. Neurosci. 34, 15009–15021. 10.1523/JNEUROSCI.1570-14.2014 PubMed DOI PMC
Proix T., Bartolomei F., Guye M., Jirsa V. K. (2017). Individual structural connectivity defines propagation networks in partial epilepsy. Brain 140, 641–654. 10.1093/brain/awx004 PubMed DOI PMC
Proix T., Jirsa V. K., Bartolomei F., Guye M., Truccolo W. (2018). Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nat. Commun. 9, 1–15. 10.1038/s41467-018-02973-y PubMed DOI PMC
Proix T., Spiegler A., Schirner M., Rothmeier S., Ritter P., Jirsa V. K. (2016). How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models? Neuroimage 142, 135–149. 10.1016/j.neuroimage.2016.06.016 PubMed DOI
Rabuffo G., Fousek J., Bernard C., Jirsa V. (2020). Neuronal cascades shape whole-brain functional dynamics at rest. bioRxiv. 10.1101/2020.12.25.424385 PubMed DOI PMC
Richardson M. P. (2012). Large scale brain models of epilepsy: dynamics meets connectomics. J. Neurol. Neurosurg. Psychiatry 83, 1238–1248. 10.1136/jnnp-2011-301944 PubMed DOI
Rosenberg D. S., Mauguière F., Demarquay G., Ryvlin P., Isnard J., Fischer C., et al. . (2006). Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures. Epilepsia 47, 98–107. 10.1111/j.1528-1167.2006.00375.x PubMed DOI
Rosenow F., Lüders H. (2001). Presurgical evaluation of epilepsy. Brain 124, 1683–1700. 10.1093/brain/124.9.1683 PubMed DOI
Rueckert D., Sonoda L. I., Hayes C., Hill D. L., Leach M. O., Hawkes D. J. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18, 712–721. 10.1109/42.796284 PubMed DOI
Sagar S., Rick J., Chandra A., Yagnik G., Aghi M. K. (2019). Functional brain mapping: overview of techniques and their application to neurosurgery. Neurosurg. Rev. 42, 639–647. 10.1007/s10143-018-1007-4 PubMed DOI
Saggio M. L., Crisp D., Scott J. M., Karoly P., Kuhlmann L., Nakatani M., et al. . (2020). A taxonomy of seizure dynamotypes. Elife 9:e55632. 10.7554/eLife.55632 PubMed DOI PMC
Saggio M. L., Spiegler A., Bernard C., Jirsa V. K. (2017). Fast-slow bursters in the unfolding of a high codimension singularity and the ultra-slow transitions of classes. J. Math. Neurosci. 7, 1–47. 10.1186/s13408-017-0050-8 PubMed DOI PMC
Sanz-Leon P., Knock S. A., Spiegler A., Jirsa V. K. (2015). Mathematical framework for large-scale brain network modeling in the virtual brain. Neuroimage 111, 385–430. 10.1016/j.neuroimage.2015.01.002 PubMed DOI
Schaffer E. S., Ostojic S., Abbott L. F. (2013). A complex-valued firing-rate model that approximates the dynamics of spiking networks. PLoS Comput. Biol. 9:e1003301. 10.1371/journal.pcbi.1003301 PubMed DOI PMC
Schirner M., McIntosh A. R., Jirsa V., Deco G., Ritter P. (2018). Inferring multi-scale neural mechanisms with brain network modelling. Elife 7:e28927. 10.7554/eLife.28927 PubMed DOI PMC
Schirner M., Rothmeier S., Jirsa V. K., McIntosh A. R., Ritter P. (2015). An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. Neuroimage 117:343–357. 10.1016/j.neuroimage.2015.03.055 PubMed DOI
Segneri M., Bi H., Olmi S., Torcini A. (2020). Theta-nested gamma oscillations in next generation neural mass models. Front. Comput. Neurosci. 14:47. 10.3389/fncom.2020.00047 PubMed DOI PMC
Shamas M., Benquet P., Merlet I., Khalil M., El Falou W., Nica A., et al. . (2018). On the origin of epileptic high frequency oscillations observed on clinical electrodes. Clin. Neurophysiol. 129, 829–841. 10.1016/j.clinph.2018.01.062 PubMed DOI
Sinai A., Bowers C. W., Crainiceanu C. M., Boatman D., Gordon B., Lesser R. P., et al. . (2005). Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain 128, 1556–1570. 10.1093/brain/awh491 PubMed DOI
Sinha N., Dauwels J., Kaiser M., Cash S. S., Brandon Westover M., Wang Y., et al. . (2017). Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140, 319–332. 10.1093/brain/aww299 PubMed DOI PMC
Smith R. E., Tournier J., Calamante F., Connelly A. (2012). Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62, 1924–1938. 10.1016/j.neuroimage.2012.06.005 PubMed DOI
Smith R. E., Tournier J., Calamante F., Connelly A. (2013). SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 67, 298–312. 10.1016/j.neuroimage.2012.11.049 PubMed DOI
Smith S. (2002). Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155. 10.1002/hbm.10062 PubMed DOI PMC
Smith S., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E., et al. . (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505. 10.1016/j.neuroimage.2006.02.024 PubMed DOI
Smith S., Jenkinson M., Woolrich M., Beckmann C., Behrens T., Johansen-Berg H., et al. . (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219. 10.1016/j.neuroimage.2004.07.051 PubMed DOI
Sotero R. C., Trujillo-Barreto N. J., Iturria-Medina Y., Carbonell F., Jimenez J. C. (2007). Realistically coupled neural mass models can generate eeg rhythms. Neural Comput. 19, 478–512. 10.1162/neco.2007.19.2.478 PubMed DOI
Spencer S. S. (2002). Neural networks in human epilepsy: Evidence of and implications for treatment. Epilepsia 43, 219–227. 10.1046/j.1528-1157.2002.26901.x PubMed DOI
Spiegler A., Knösche T. R., Schwab K., Haueisen J., Atay F. M. (2011). Modeling brain resonance phenomena using a neural mass model. PLoS Comput. Biol. 7:e1002298. 10.1371/journal.pcbi.1002298 PubMed DOI PMC
Taher H., Torcini A., Olmi S. (2020). Exact neural mass model for synaptic-based working memory. PLoS Comput Biol. 16:e1008533. 10.1371/journal.pcbi.1008533 PubMed DOI PMC
Talairach J., Bancaud J. (1966). Lesion," irritative" zone and epileptogenic focus. Stereotact. Funct. Neurosurg. 27, 91–94. 10.1159/000103937 PubMed DOI
Taylor P. N., Goodfellow M., Wang Y., Baier G. (2013). Towards a large-scale model of patient-specific epileptic spike-wave discharges. Biol. Cybern. 107, 83–94. 10.1007/s00422-012-0534-2 PubMed DOI
Terry J. R., Benjamin O., Richardson M. P. (2012). Seizure generation: the role of nodes and networks. Epilepsia 53, e166–e169. 10.1111/j.1528-1167.2012.03560.x PubMed DOI
Touboul J., Wendling F., Chauvel P., Faugeras O. (2011). Neural mass activity, bifurcations, and epilepsy. Neural Comput. 23, 3232–3286. 10.1162/NECO_a_00206 PubMed DOI
Tournier J. (2010). Mrtrix Package. Melbourne, VIC:Brain Research Institute. Available online at: https://github.com/jdtournier/mrtrix3
Tournier J., Calamante F., Connelly A. (2007). Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35, 1459–1472. 10.1016/j.neuroimage.2007.02.016 PubMed DOI
Toyoda I., Bower M. R., Leyva F., Buckmaster P. S. (2013). Early activation of ventral hippocampus and subiculum during spontaneous seizures in a rat model of temporal lobe epilepsy. J. Neurosci. 33, 11100–11115. 10.1523/JNEUROSCI.0472-13.2013 PubMed DOI PMC
Traub R. D., Whittington M. A., Buhl E. H., LeBeau F. E., Bibbig A., Boyd S., et al. . (2001). A possible role for gap junctions in generation of very fast eeg oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 42, 153–170. 10.1046/j.1528-1157.2001.4220153.x PubMed DOI
Turrigiano G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435. 10.1016/j.cell.2008.10.008 PubMed DOI PMC
Tyulkina I. V., Goldobin D. S., Klimenko L. S., Pikovsky A. (2018). Dynamics of noisy oscillator populations beyond the ott-antonsen ansatz. Phys. Rev. Lett. 120, 264101. 10.1103/PhysRevLett.120.264101 PubMed DOI
Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al. . (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289. 10.1006/nimg.2001.0978 PubMed DOI
Uematsu S., Lesser R., Fisher R. S., Gordon B., Hara K., Krauss G. L., et al. . (1992). Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery 31, 59–72. 10.1227/00006123-199207000-00009 PubMed DOI
Ullah G., Cressman Jr J. R., Barreto E., Schiff S. J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: Ii. network and glial dynamics. J. Comput. Neurosci. 26, 171–183. 10.1007/s10827-008-0130-6 PubMed DOI PMC
Ursino M., La Cara G.-E. (2006). Travelling waves and eeg patterns during epileptic seizure: analysis with an integrate-and-fire neural network. J. Theo. Biol. 242, 171–187. 10.1016/j.jtbi.2006.02.012 PubMed DOI
Valdes-Sosa P. A., Sanchez-Bornot J. M., Sotero R. C., Iturria-Medina Y., Aleman-Gomez Y., Bosch-Bayard J., et al. . (2009). Model driven eeg/fmri fusion of brain oscillations. Hum. Brain Mapp. 30, 2701–2721. 10.1002/hbm.20704 PubMed DOI PMC
Valentin A., Anderson M., Alarcon G., Seoane J. G., Selway R., Binnie C., et al. . (2002). Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. Brain 125, 1709–1718. 10.1093/brain/awf187 PubMed DOI
Van Drongelen W., Lee H. C., Hereld M., Chen Z., Elsen F. P., Stevens R. L. (2005). Emergent epileptiform activity in neural networks with weak excitatory synapses. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 236–241. 10.1109/TNSRE.2005.847387 PubMed DOI
Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., et al. . (2020). SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17, 261–272. 10.1038/s41592-019-0686-2 PubMed DOI PMC
Wang S., Wang I. Z., Bulacio J. C., Mosher J. C., Gonzalez-Martinez J., Alexopoulos A. V., et al. . (2013). Ripple classification helps to localize the seizure-onset zone in neocortical epilepsy. Epilepsia 54, 370–376. 10.1111/j.1528-1167.2012.03721.x PubMed DOI
Wendling F., Bartolomei F., Bellanger J., Chauvel P. (2002). Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. Eur. J. Neurosci. 15, 1499–1508. 10.1046/j.1460-9568.2002.01985.x PubMed DOI
Wendling F., Benquet P., Bartolomei F., Jirsa V. (2016). Computational models of epileptiform activity. J. Neurosci. Methods 260, 233–251. 10.1016/j.jneumeth.2015.03.027 PubMed DOI
White J. A., Banks M. I., Pearce R. A., Kopell N. J. (2000). Networks of interneurons with fast and slow γ-aminobutyric acid type a (gabaa) kinetics provide substrate for mixed gamma-theta rhythm. Proc. Natl. Acad. Sci. U.S.A. 97, 8128–8133. 10.1073/pnas.100124097 PubMed DOI PMC
Whittington M. A., Traub R., Kopell N., Ermentrout B., Buhl E. (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysiol. 38, 315–336. 10.1016/S0167-8760(00)00173-2 PubMed DOI
Wilson H. R., Cowan J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24. 10.1016/S0006-3495(72)86068-5 PubMed DOI PMC
World Health Organization (2005). Atlas: Epilepsy Care in the World 2005. Geneva: World Health Organization, International Bureau for Epilepsy and the International League against Epilepsy.
Worrell G. A., Parish L., Cranstoun S. D., Jonas R., Baltuch G., Litt B. (2004). High-frequency oscillations and seizure generation in neocortical epilepsy. Brain 127, 1496–1506. 10.1093/brain/awh149 PubMed DOI
Zetterberg L., Kristiansson L., Mossberg K. (1978). Performance of a model for a local neuron population. Biol. Cybern. 31, 15–26. 10.1007/BF00337367 PubMed DOI
Zijlmans M., Jiruska P., Zelmann R., Leijten F. S., Jefferys J. G., Gotman J. (2012). High-frequency oscillations as a new biomarker in epilepsy. Ann. Neurol. 71, 169–178. 10.1002/ana.22548 PubMed DOI PMC