Human brain structural connectivity matrices-ready for modelling

. 2022 Aug 09 ; 9 (1) : 486. [epub] 20220809

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35945231

Grantová podpora
DRO 2021 National Institute of Mental Health - NIMH IN 00023752 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU21-08-00432 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-08-00432 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-08-00432 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-08-00432 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
Strategy AV21 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
Strategy AV21 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
Strategy AV21 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
Strategy AV21 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
Strategy AV21 Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
21-32608S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-32608S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
SGS20/172/OHK3/3T/13 České Vysoké Učení Technické v Praze (Czech Technical University in Prague)

Odkazy

PubMed 35945231
PubMed Central PMC9363436
DOI 10.1038/s41597-022-01596-9
PII: 10.1038/s41597-022-01596-9
Knihovny.cz E-zdroje

The human brain represents a complex computational system, the function and structure of which may be measured using various neuroimaging techniques focusing on separate properties of the brain tissue and activity. We capture the organization of white matter fibers acquired by diffusion-weighted imaging using probabilistic diffusion tractography. By segmenting the results of tractography into larger anatomical units, it is possible to draw inferences about the structural relationships between these parts of the system. This pipeline results in a structural connectivity matrix, which contains an estimate of connection strength among all regions. However, raw data processing is complex, computationally intensive, and requires expert quality control, which may be discouraging for researchers with less experience in the field. We thus provide brain structural connectivity matrices in a form ready for modelling and analysis and thus usable by a wide community of scientists. The presented dataset contains brain structural connectivity matrices together with the underlying raw diffusion and structural data, as well as basic demographic data of 88 healthy subjects.

Zobrazit více v PubMed

Friston K. Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping. 1994;2:56–78. doi: 10.1002/hbm.460020107. DOI

Griffa A, Baumann PS, Thiran JP, Hagmann P. Structural connectomics in brain diseases. NeuroImage. 2013;80:515–526. doi: 10.1016/j.neuroimage.2013.04.056. PubMed DOI

Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Computational Biology. 2008;4:e1000196. doi: 10.1371/journal.pcbi.1000196. PubMed DOI PMC

Honey CJ, et al. Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:2035–2040. doi: 10.1073/pnas.0811168106. PubMed DOI PMC

Daffertshofer, A. & van Wijk, B. C. On the influence of amplitude on the connectivity between phases. Frontiers in Neuroinformatics5, 10.3389/fninf.2011.00006 (2011). PubMed PMC

Hlinka J, Coombes S. Using computational models to relate structural and functional brain connectivity. European Journal of Neuroscience. 2012;36:2137–2145. doi: 10.1111/j.1460-9568.2012.08081.x. PubMed DOI PMC

Park H-J, Friston K. Structural and functional brain networks: From connections to cognition. Science. 2013;342:1238411–1238411. doi: 10.1126/science.1238411. PubMed DOI

Straathof M, Sinke MRT, Dijkhuizen RM, Otte WM. A systematic review on the quantitative relationship between structural and functional network connectivity strength in mammalian brains. Journal of Cerebral Blood Flow & Metabolism. 2019;39:189–209. doi: 10.1177/0271678×18809547. PubMed DOI PMC

Cabral J, Kringelbach ML, Deco G. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms. NeuroImage. 2017;160:84–96. doi: 10.1016/j.neuroimage.2017.03.045. PubMed DOI

Jirsa VK, et al. The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread. NeuroImage. 2017;145:377–388. doi: 10.1016/j.neuroimage.2016.04.049. PubMed DOI

Gerster M, et al. Patient-specific network connectivity combined with a next generation neural mass model to test clinical hypothesis of seizure propagation. Frontiers in Systems Neuroscience. 2021;15:79. doi: 10.3389/fnsys.2021.675272. PubMed DOI PMC

Zhang, F. et al. Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review. Neuroimage, 118870, 10.1016/j.neuroimage.2021.118870 (2022). PubMed PMC

Tzourio-Mazoyer N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–289. doi: 10.1006/nimg.2001.0978. PubMed DOI

Melicher T, et al. White matter changes in first episode psychosis and their relation to the size of sample studied: A DTI study. Schizophrenia research. 2015;162:22–28. doi: 10.1016/j.schres.2015.01.029. PubMed DOI

Chouzouris T, et al. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity. Chaos. 2018;28:045112. doi: 10.1063/1.5009812. PubMed DOI

Ramlow, L. et al. Partial synchronization in empirical brain networks as a model for unihemispheric sleep. EPL126, 10.1209/0295-5075/126/50007 (2019).

Gerster M, et al. FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos. 2020;30:123130. doi: 10.1063/5.0021420. PubMed DOI

Lecrubier Y, et al. The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. European Psychiatry. 1997;12:224–231. doi: 10.1016/S0924-9338(97)83296-8. DOI

Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Medical Image Analysis. 2001;5:143–156. doi: 10.1016/s1361-8415(01)00036-6. PubMed DOI

Jenkinson M, Bannister P, Brady J, Smith S. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–841. doi: 10.1016/s1053-8119(02)91132-8. PubMed DOI

Jenkinson M, Beckmann C, Behrens T, Woolrich M, Smith S. FSL. NeuroImage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI

Hayashi, T. DTI preprocess script. web, http://www.bic.mni.mcgill.ca/thayashi/dti.html (2013).

Smith SM. Fast robust automated brain extraction. Human Brain Mapping. 2002;17:143–155. doi: 10.1002/hbm.10062. PubMed DOI PMC

Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain. NeuroImage. 2007;34:144–155. doi: 10.1016/j.neuroimage.2006.09.018. PubMed DOI PMC

Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage. 2009;48:63–72. doi: 10.1016/j.neuroimage.2009.06.060. PubMed DOI PMC

Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imag. 2001;20:45–57. doi: 10.1109/42.906424. PubMed DOI

Skoch A, 2021. Human brain structural connectivity matrices. Open Science Framework. DOI

Soares J, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Frontiers in Neuroscience. 2013;7:31. doi: 10.3389/fnins.2013.00031. PubMed DOI PMC

Tahedl MBATMAN. 2020. Basic and advanced tractography with MRtrix for all neurophiles. Open Science Framework. DOI

Cabral J, et al. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks. Chaos. 2013;23:046111. doi: 10.1063/1.4851117. PubMed DOI

Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage. 2010;52:1059–1069. doi: 10.1016/j.neuroimage.2009.10.003. PubMed DOI

Papademetris, X. et al. BioImage Suite: An integrated medical image analysis suite: An update. The Insight Journal (2006). PubMed PMC

Aquino KM, et al. On the intersection between data quality and dynamical modelling of large-scale fMRI signals. Neuroimage. 2022;256:119051. doi: 10.1016/j.neuroimage.2022.119051. PubMed DOI

Shimoura, R. O. et al. Building a model of the brain: From detailed connectivity maps to network organization. The European Physical Journal Special Topics 1–23, 10.1140/epjs/s11734-021-00152-7 (2021).

Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA. Software for brain network simulations: A comparative study. Frontiers in Neuroinformatics. 2017;11:46. doi: 10.3389/fninf.2017.00046. PubMed DOI PMC

Sanzleon P, et al. The Virtual Brain: A simulator of primate brain network dynamics. Frontiers in Neuroinformatics. 2013;7:16625196. doi: 10.3389/fninf.2013.00010. PubMed DOI PMC

Heitmann S, Aburn MJ, Breakspear M. The Brain Dynamics Toolbox for Matlab. Neurocomputing. 2018;315:82–88. doi: 10.1016/j.neucom.2018.06.026. DOI

Sherfey JS, et al. DynaSim: A MATLAB toolbox for neural modeling and simulation. Frontiers in Neuroinformatics. 2018;12:10. doi: 10.3389/fninf.2018.00010. PubMed DOI PMC

Dai K, et al. Brain Modeling ToolKit: An open source software suite for multiscale modeling of brain circuits. PLOS Computational Biology. 2020;16:e1008386. doi: 10.1371/journal.pcbi.1008386. PubMed DOI PMC

Schilling KG, et al. Challenges in diffusion MRI tractography–Lessons learned from international benchmark competitions. Magnetic Resonance Imaging. 2019;57:194–209. doi: 10.1016/j.mri.2018.11.014. PubMed DOI PMC

Maier-Hein KH, et al. The challenge of mapping the human connectome based on diffusion tractography. Nature Communications. 2017;8:1349. doi: 10.1038/s41467-017-01285-x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...