Human brain structural connectivity matrices-ready for modelling
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články
Grantová podpora
DRO 2021 National Institute of Mental Health - NIMH IN 00023752
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
DRO 2021 National Institute of Mental Health - NIMH IN 00023752
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU21-08-00432
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-08-00432
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-08-00432
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
NU21-08-00432
Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
Strategy AV21
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
Strategy AV21
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
Strategy AV21
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
Strategy AV21
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
Strategy AV21
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
21-32608S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-32608S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
SGS20/172/OHK3/3T/13
České Vysoké Učení Technické v Praze (Czech Technical University in Prague)
PubMed
35945231
PubMed Central
PMC9363436
DOI
10.1038/s41597-022-01596-9
PII: 10.1038/s41597-022-01596-9
Knihovny.cz E-zdroje
- MeSH
- bílá hmota * diagnostické zobrazování MeSH
- difuzní magnetická rezonance MeSH
- konektom MeSH
- lidé MeSH
- mozek * diagnostické zobrazování MeSH
- počítačové zpracování obrazu * MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
The human brain represents a complex computational system, the function and structure of which may be measured using various neuroimaging techniques focusing on separate properties of the brain tissue and activity. We capture the organization of white matter fibers acquired by diffusion-weighted imaging using probabilistic diffusion tractography. By segmenting the results of tractography into larger anatomical units, it is possible to draw inferences about the structural relationships between these parts of the system. This pipeline results in a structural connectivity matrix, which contains an estimate of connection strength among all regions. However, raw data processing is complex, computationally intensive, and requires expert quality control, which may be discouraging for researchers with less experience in the field. We thus provide brain structural connectivity matrices in a form ready for modelling and analysis and thus usable by a wide community of scientists. The presented dataset contains brain structural connectivity matrices together with the underlying raw diffusion and structural data, as well as basic demographic data of 88 healthy subjects.
Faculty of Electrical Engineering Czech Technical University Prague Prague Czech Republic
Institute for Clinical and Experimental Medicine Prague Czech Republic
Institute of Computer Science of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Friston K. Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping. 1994;2:56–78. doi: 10.1002/hbm.460020107. DOI
Griffa A, Baumann PS, Thiran JP, Hagmann P. Structural connectomics in brain diseases. NeuroImage. 2013;80:515–526. doi: 10.1016/j.neuroimage.2013.04.056. PubMed DOI
Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Computational Biology. 2008;4:e1000196. doi: 10.1371/journal.pcbi.1000196. PubMed DOI PMC
Honey CJ, et al. Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:2035–2040. doi: 10.1073/pnas.0811168106. PubMed DOI PMC
Daffertshofer, A. & van Wijk, B. C. On the influence of amplitude on the connectivity between phases. Frontiers in Neuroinformatics5, 10.3389/fninf.2011.00006 (2011). PubMed PMC
Hlinka J, Coombes S. Using computational models to relate structural and functional brain connectivity. European Journal of Neuroscience. 2012;36:2137–2145. doi: 10.1111/j.1460-9568.2012.08081.x. PubMed DOI PMC
Park H-J, Friston K. Structural and functional brain networks: From connections to cognition. Science. 2013;342:1238411–1238411. doi: 10.1126/science.1238411. PubMed DOI
Straathof M, Sinke MRT, Dijkhuizen RM, Otte WM. A systematic review on the quantitative relationship between structural and functional network connectivity strength in mammalian brains. Journal of Cerebral Blood Flow & Metabolism. 2019;39:189–209. doi: 10.1177/0271678×18809547. PubMed DOI PMC
Cabral J, Kringelbach ML, Deco G. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms. NeuroImage. 2017;160:84–96. doi: 10.1016/j.neuroimage.2017.03.045. PubMed DOI
Jirsa VK, et al. The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread. NeuroImage. 2017;145:377–388. doi: 10.1016/j.neuroimage.2016.04.049. PubMed DOI
Gerster M, et al. Patient-specific network connectivity combined with a next generation neural mass model to test clinical hypothesis of seizure propagation. Frontiers in Systems Neuroscience. 2021;15:79. doi: 10.3389/fnsys.2021.675272. PubMed DOI PMC
Zhang, F. et al. Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: A review. Neuroimage, 118870, 10.1016/j.neuroimage.2021.118870 (2022). PubMed PMC
Tzourio-Mazoyer N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15:273–289. doi: 10.1006/nimg.2001.0978. PubMed DOI
Melicher T, et al. White matter changes in first episode psychosis and their relation to the size of sample studied: A DTI study. Schizophrenia research. 2015;162:22–28. doi: 10.1016/j.schres.2015.01.029. PubMed DOI
Chouzouris T, et al. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity. Chaos. 2018;28:045112. doi: 10.1063/1.5009812. PubMed DOI
Ramlow, L. et al. Partial synchronization in empirical brain networks as a model for unihemispheric sleep. EPL126, 10.1209/0295-5075/126/50007 (2019).
Gerster M, et al. FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos. 2020;30:123130. doi: 10.1063/5.0021420. PubMed DOI
Lecrubier Y, et al. The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. European Psychiatry. 1997;12:224–231. doi: 10.1016/S0924-9338(97)83296-8. DOI
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Medical Image Analysis. 2001;5:143–156. doi: 10.1016/s1361-8415(01)00036-6. PubMed DOI
Jenkinson M, Bannister P, Brady J, Smith S. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–841. doi: 10.1016/s1053-8119(02)91132-8. PubMed DOI
Jenkinson M, Beckmann C, Behrens T, Woolrich M, Smith S. FSL. NeuroImage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI
Hayashi, T. DTI preprocess script. web, http://www.bic.mni.mcgill.ca/thayashi/dti.html (2013).
Smith SM. Fast robust automated brain extraction. Human Brain Mapping. 2002;17:143–155. doi: 10.1002/hbm.10062. PubMed DOI PMC
Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain. NeuroImage. 2007;34:144–155. doi: 10.1016/j.neuroimage.2006.09.018. PubMed DOI PMC
Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage. 2009;48:63–72. doi: 10.1016/j.neuroimage.2009.06.060. PubMed DOI PMC
Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imag. 2001;20:45–57. doi: 10.1109/42.906424. PubMed DOI
Skoch A, 2021. Human brain structural connectivity matrices. Open Science Framework. DOI
Soares J, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Frontiers in Neuroscience. 2013;7:31. doi: 10.3389/fnins.2013.00031. PubMed DOI PMC
Tahedl MBATMAN. 2020. Basic and advanced tractography with MRtrix for all neurophiles. Open Science Framework. DOI
Cabral J, et al. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks. Chaos. 2013;23:046111. doi: 10.1063/1.4851117. PubMed DOI
Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage. 2010;52:1059–1069. doi: 10.1016/j.neuroimage.2009.10.003. PubMed DOI
Papademetris, X. et al. BioImage Suite: An integrated medical image analysis suite: An update. The Insight Journal (2006). PubMed PMC
Aquino KM, et al. On the intersection between data quality and dynamical modelling of large-scale fMRI signals. Neuroimage. 2022;256:119051. doi: 10.1016/j.neuroimage.2022.119051. PubMed DOI
Shimoura, R. O. et al. Building a model of the brain: From detailed connectivity maps to network organization. The European Physical Journal Special Topics 1–23, 10.1140/epjs/s11734-021-00152-7 (2021).
Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA. Software for brain network simulations: A comparative study. Frontiers in Neuroinformatics. 2017;11:46. doi: 10.3389/fninf.2017.00046. PubMed DOI PMC
Sanzleon P, et al. The Virtual Brain: A simulator of primate brain network dynamics. Frontiers in Neuroinformatics. 2013;7:16625196. doi: 10.3389/fninf.2013.00010. PubMed DOI PMC
Heitmann S, Aburn MJ, Breakspear M. The Brain Dynamics Toolbox for Matlab. Neurocomputing. 2018;315:82–88. doi: 10.1016/j.neucom.2018.06.026. DOI
Sherfey JS, et al. DynaSim: A MATLAB toolbox for neural modeling and simulation. Frontiers in Neuroinformatics. 2018;12:10. doi: 10.3389/fninf.2018.00010. PubMed DOI PMC
Dai K, et al. Brain Modeling ToolKit: An open source software suite for multiscale modeling of brain circuits. PLOS Computational Biology. 2020;16:e1008386. doi: 10.1371/journal.pcbi.1008386. PubMed DOI PMC
Schilling KG, et al. Challenges in diffusion MRI tractography–Lessons learned from international benchmark competitions. Magnetic Resonance Imaging. 2019;57:194–209. doi: 10.1016/j.mri.2018.11.014. PubMed DOI PMC
Maier-Hein KH, et al. The challenge of mapping the human connectome based on diffusion tractography. Nature Communications. 2017;8:1349. doi: 10.1038/s41467-017-01285-x. PubMed DOI PMC