Using computational models to relate structural and functional brain connectivity

. 2012 Jul ; 36 (2) : 2137-45.

Jazyk angličtina Země Francie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22805059

Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson-Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph-theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics.

Zobrazit více v PubMed

Bassett DS, Bullmore ET. Human brain networks in health and disease. Curr. Opin. Neurobiol. 2009;22:340–347. PubMed PMC

Bojak I, Oostendorp TF, Reid AT, Kotter R. Connecting mean field models of neural activity to EEG and fMRI data. Brain Topogr. 2010;23:139–149. (2, SI) PubMed

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10:186–198. PubMed

Campbell SA, Kobelevskiy I. Phase models and oscillators with time delayed coupling. Discrete Contin. Dyn. Syst. 2012;8:2653–2673.

Coombes S, Laing CL. Delays in activity based neural networks. Philos. Transact. A Math. Phys. Eng. Sci. 2009;367:1117–1129. PubMed

Daffertshofer A, van Wijk BCM. On the influence of amplitude on the connectivity between phases. Front. Neuroinform. 2011;5:6, doi: 10.3389/fninf.2011.00006 [online]. PubMed PMC

Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 2011;12:43–56. PubMed

Ermentrout B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide To Xppaut for Researchers and Students. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics; 2002.

Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol. 2008;4:e1000196. PubMed PMC

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6:e159. PubMed PMC

Hlinka J, Palus M, Vejmelka M, Mantini D, Corbetta M. Functional connectivity in resting-state fMRI: is linear correlation sufficient? NeuroImage. 2011a;54:2218–2225. PubMed PMC

Hlinka J, Hartman D, Vejmelka M, Paluš M. Inferring coupling structure from dynamics in complex systems: consequences for graph–theoretical analysis. In: Thurner S, Szell M, editors. ECCS’11 Book of Abstracts. Löcker Verlag, Vienna: 11th European Conference on Complex Systems, Vienna; 2011b. p. 156.

Honey CJ, Kotter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Nat. Acad. Sci. USA. 2007;104:10240–10245. PubMed PMC

Honey CJ, Thivierge J-P, Sporns O. Can structure predict function in the human brain? NeuroImage. 2010;52:766–776. PubMed

Hoppensteadt FC, Izhikevich EM. Weakly Connected Neural Networks. Secaucus, NJ, USA: Springer-Verlag New York Inc; 1997.

Humphries MD, Gurney K. Network ‘Small-World-Ness’: a quantitative method for determining canonical network equivalence. PLoS ONE. 2008;3:e0002051. PubMed PMC

Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 1995;73:357–366. PubMed

Kotter R. Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics. 2004;2:127–144. PubMed

Leistedt SJJ, Coumans N, Dumont M, Lanquart J-P, Stam CJ, Linkowski P. Altered sleep brain functional connectivity in acutely depressed patients. Hum. Brain Mapp. 2009;30:2207–2219. PubMed PMC

Liley DTJ, Bojak I, Dafilis MP, van Veen L, Frascoli F, Foster BL. Bifurcations and state changes in the human alpha rhythm: theory and experiment. In: SteynRoss DA, SteynRoss M, editors. Modeling Phase Transitions in the Brain. NY: Springer; 2010. pp. 117–145.

Marten F, Rodrigues S, Benjamin O, Richardson MP, Terry JR. Onset of poly-spike complexes in a mean-field model of human EEG and its application to absence epilepsy. Philos. Transact. A Math. Phys. Eng. Sci. 2009;367:1145–1161. PubMed

Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002;296:910–913. PubMed

Mormann F, Lehnertz K, David P, Elger C. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D. 2000;144:358–369.

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52:1059–1069. PubMed

Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AWF, Williams LM, Breakspear M. Small-world properties of nonlinear brain activity in schizophrenia. Hum. Brain Mapp. 2009;30:403–416. PubMed PMC

Scannell JW, Burns GA, Hilgetag CC, O'Neil MA, Young MP. The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex. 1999;9:277–299. PubMed

Shehzad Z, Kelly AMC, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB, Petkova E, Castellanos FX, Milham MP. The resting brain: unconstrained yet reliable. Cereb. Cortex. 2009;19:2209–2229. PubMed PMC

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF. Correspondence of the brain's functional architecture during activation and rest. Proc. Nat. Acad. Sci. U.S.A. 2009;106:13040–13045. PubMed PMC

Sporns O. The non-random brain: efficiency, economy, and complex dynamics. Front. Comput. Neurosci. 2011;5:doi: 10.3389/fncom.2011.00005 [online]. PubMed PMC

Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. Small-world networks and functional connectivity in Alzheimer's disease. Cereb. Cortex. 2007;17:92–99. PubMed

Watts D, Strogatz S. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–442. PubMed

Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 1972;12:1–24. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Human brain structural connectivity matrices-ready for modelling

. 2022 Aug 09 ; 9 (1) : 486. [epub] 20220809

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace