Amplitude entropy captures chimera resembling behavior in the altered brain dynamics during seizures

. 2025 Apr 23 ; 15 (1) : 14212. [epub] 20250423

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40268994

Grantová podpora
21-32608S Czech Science Foundation
21-32608S Czech Science Foundation
21-32608S Czech Science Foundation
80120 Charles University Grant Agency
RVO:67985807 Institute of Computer Science of the Czech Academy of Sciences
RVO:67985807 Institute of Computer Science of the Czech Academy of Sciences
RVO:67985807 Institute of Computer Science of the Czech Academy of Sciences
CZ.02.01.01/00/22_008/0004643 ERDF-Project Brain dynamics
CZ.02.01.01/00/22_008/0004643 ERDF-Project Brain dynamics

Odkazy

PubMed 40268994
PubMed Central PMC12019240
DOI 10.1038/s41598-025-97854-y
PII: 10.1038/s41598-025-97854-y
Knihovny.cz E-zdroje

Epilepsy is a neurological disease characterized by epileptic seizures, which commonly manifest with pronounced frequency and amplitude changes in the EEG signal. In the case of focal seizures, initially localized pathological activity spreads from a so-called "onset zone" to a wider network of brain areas. Chimeras, defined as states of simultaneously occurring coherent and incoherent dynamics in symmetrically coupled networks are increasingly invoked for characterization of seizures. In particular, chimera-like states have been observed during the transition from a normal (asynchronous) to a seizure (synchronous) network state. However, chimeras in epilepsy have only been investigated with respect to the varying phases of oscillators. We propose a novel method to capture the characteristic pronounced changes in the recorded EEG amplitude during seizures by estimating chimera-like states directly from the signals in a frequency- and time-resolved manner. We test the method on a publicly available intracranial EEG dataset of 16 patients with focal epilepsy. We show that the proposed measure, titled Amplitude Entropy, is sensitive to the altered brain dynamics during seizure, demonstrating its significant increases during seizure as compared to before and after seizure. This finding is robust across patients, their seizures, and different frequency bands. In the future, Amplitude Entropy could serve not only as a feature for seizure detection, but also help in characterizing amplitude chimeras in other networked systems with characteristic amplitude dynamics.

Zobrazit více v PubMed

Pecora, L. M. & Carroll, T. L. Synchronization in chaotic systems. Phys. Rev. Lett.64, 821–824. 10.1103/PhysRevLett.64.821 (1990). PubMed

Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: a universal concept in nonlinear sciences. No. 12 in The Cambridge nonlinear science series (Cambridge University Press, Cambridge, 2001).

Engel, A. K. & Singer, W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci.5, 16–25 (2001). PubMed

Ward, L. M. Synchronous neural oscillations and cognitive processes. Trends Cogn. Sci.7, 553–559 (2003). PubMed

Uhlhaas, P. J. & Singer, W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron52, 155–168 (2006). PubMed

Shorvon, S. et al. (eds) Oxford Textbook of Epilepsy and Epileptic Seizures (Oxford University Press, Oxford, 2012).

Fisher, R. S. et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia55, 475–482. 10.1111/epi.12550 (2014). PubMed

Penfield, W. & Jasper, H. Epilepsy and the functional anatomy of the human brain. JAMA155, 86. 10.1001/jama.1954.03690190092039 (1954).

Mormann, F., Lehnertz, K., David, P. & Elger, C. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D Nonlinear Phenomena144, 358–369. 10.1016/S0167-2789(00)00087-7 (2000).

Mormann, F. et al. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res.53, 173–185. 10.1016/S0920-1211(03)00002-0 (2003). PubMed

Espinoso, A. & Andrzejak, R. G. Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients. Phys. Rev. E105, 034212. 10.1103/PhysRevE.105.034212 (2022). PubMed

Kuhlmann, L. et al. Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons. Epilepsy Res.91, 214–231. 10.1016/j.eplepsyres.2010.07.014 (2010). PubMed

Jiruska, P. et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses: Synchronization in epilepsy. J. Physiol.591, 787–797. 10.1113/jphysiol.2012.239590 (2013). PubMed PMC

Jouny, C. C. & Bergey, G. K. Characterization of early partial seizure onset: Frequency, complexity and entropy. Clin. Neurophysiol.123, 658–669 (2012). PubMed PMC

Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. Seizure prediction: The long and winding road. Brain130, 314–333. 10.1093/brain/awl241 (2007). PubMed

Kuhlmann, L., Lehnertz, K., Richardson, M. P., Schelter, B. & Zaveri, H. P. Seizure prediction - ready for a new era. Nat. Rev. Neurol.14, 618–630. 10.1038/s41582-018-0055-2 (2018). PubMed

Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci.15, 683–695. 10.1038/nrn3801 (2014). PubMed

Moraes, M. F. D., de Castro Medeiros, D., Mourao, F. A. G., Cancado, S. A. V. & Cota, V. R. Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy Behav.121, 106838. 10.1016/j.yebeh.2019.106838 (2021). PubMed

Kalitzin, S. et al. Epilepsy as a manifestation of a multistate network of oscillatory systems. Neurobiol. Dis.130, 104488. 10.1016/j.nbd.2019.104488 (2019). PubMed

Engel, J., Stern, J. M., Bragin, A. & Mody, I. Connectomics and epilepsy: Current Opinion in Neurology26, 186–194. 10.1097/WCO.0b013e32835ee5b8 (2013). PubMed PMC

Da Silva, F. H. L., Gorter, J. A. & Wadman, W. J. Epilepsy as a dynamic disease of neuronal networks. In Handbook of Clinical Neurology107, 35–62. 10.1016/B978-0-444-52898-8.00003-3 (Elsevier, 2012). PubMed

Dallmer-Zerbe, I., Jiruska, P. & Hlinka, J. Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy. Epilepsia10.1111/epi.17690 (2023). PubMed

Zakharova, A. Chimera patterns in networks (Springer, 2020).

Kuramoto, Y. & Battogtokh, D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenomena Complex Syst.5, 380–385 (2002).

Abrams, D. M. & Strogatz, S. H. Chimera states for coupled oscillators. Phys. Rev. Lett.93, 174102. 10.1103/PhysRevLett.93.174102 (2004). PubMed

Parastesh, F. et al. Chimeras. Phys. Rep.898, 1–114. 10.1016/j.physrep.2020.10.003 (2021).

Ferré, M. Critical visit to the chimera world. Chaos, Solitons Fractals166, 112991 (2023).

Andrzejak, R. G., Rummel, C., Mormann, F. & Schindler, K. All together now: Analogies between chimera state collapses and epileptic seizures. Sci. Rep.6, 23000. 10.1038/srep23000 (2016). PubMed PMC

Lainscsek, C., Rungratsameetaweemana, N., Cash, S. S. & Sejnowski, T. J. Cortical chimera states predict epileptic seizures. Chaos: Interdis. J. Nonlinear Sci.29, 121106. 10.1063/1.5139654 (2019). PubMed PMC

Gerster, M. et al. FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos: Interdis. J. Nonlinear Sci.30, 123130. 10.1063/5.0021420 (2020). PubMed

Chouzouris, T. et al. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity. Chaos: Interdis. J. Nonlinear Sci.28, 045112. 10.1063/1.5009812 (2018). PubMed

Škoch, A. et al. Human brain structural connectivity matrices-ready for modelling. Sci. Data9, 486. 10.1038/s41597-022-01596-9 (2022). PubMed PMC

Onojima, T. & Kitajo, K. A state-informed stimulation approach with real-time estimation of the instantaneous phase of neural oscillations by a kalman filter. J. Neural Eng.18, 066001. 10.1088/1741-2552/ac2f7b (2021). PubMed

Zakharova, A., Kapeller, M. & Schöll, E. Chimera death: Symmetry breaking in dynamical networks. Phys. Rev. Lett.112, 154101. 10.1103/PhysRevLett.112.154101 (2014). PubMed

Zakharova, A., Kapeller, M. & Schöll, E. Amplitude chimeras and chimera death in dynamical networks. J. Phys.: Conf. Ser.727, 012018. 10.1088/1742-6596/727/1/012018 (2016).

Fisher, R. S., Scharfman, H. E. & DeCurtis, M. How can we identify ictal and interictal abnormal activity? Issues in clinical epileptology: A view from the bench 3–23 (2014). PubMed PMC

Cámpora, N. E., Mininni, C. J., Kochen, S. & Lew, S. E. Seizure localization using pre ictal phase-amplitude coupling in intracranial electroencephalography. Sci. Rep.9, 20022 (2019). PubMed PMC

Rungratsameetaweemana, N. et al. Brain network dynamics codify heterogeneity in seizure evolution. Brain Commun.4, fcac234 (2022). PubMed PMC

SWEC, I. B. & ISL, E. Z. SWEC-ETHZ iEEG Database.

Burrello, A., Schindler, K., Benini, L. & Rahimi, A. One-shot Learning for iEEG Seizure Detection Using End-to-end Binary Operations: Local Binary Patterns with Hyperdimensional Computing. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–4, 10.1109/BIOCAS.2018.8584751 (IEEE, Cleveland, OH, 2018).

Burrello, A., Schindler, K., Benini, L. & Rahimi, A. Hyperdimensional computing with local binary patterns: one-shot learning of seizure onset and identification of ictogenic brain regions using short-time iEEG recordings. IEEE Trans. Biomed. Eng.67, 601–613. 10.1109/TBME.2019.2919137 (2020). PubMed

Banerjee, T., Biswas, D., Ghosh, D., Schöll, E. & Zakharova, A. Networks of coupled oscillators: From phase to amplitude chimeras. Chaos: Interdis. J. Nonlinear Sci.28, 113124. 10.1063/1.5054181 (2018). PubMed

Huang, N. E. Hilbert-Huang transform and its applications, vol. 16 (World scientific, 2014).

Freeman, W. J. Origin, structure, and role of background eeg activity part 1 analytic amplitude. Clin. Neurophysiol.115, 2077–2088 (2004). PubMed

Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J.27, 379–423 (1948).

Schindler, K., Leung, H., Elger, C. E. & Lehnertz, K. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain130, 65–77. 10.1093/brain/awl304 (2006). PubMed

Inc., T. M. Matlab version: 9.13.0 (r2020b) (2020).

West, B. T., Welch, K. B. & Galecki, A. T. Linear mixed models: a practical guide using statistical software (Chapman and Hall/CRC, 2022).

Perucca, P., Dubeau, F. & Gotman, J. Intracranial electroencephalographic seizure-onset patterns: Effect of underlying pathology. Brain137, 183–196 (2014). PubMed

Espinoso, A., Leguia, M. G., Rummel, C., Schindler, K. & Andrzejak, R. G. The part and the whole: How single nodes contribute to large-scale phase-locking in functional EEG networks. Clin. Neurophysiol.168, 178–192. 10.1016/j.clinph.2024.09.008 (2024). PubMed

Dallmer-Zerbe, I. et al. Computational modeling allows unsupervised classification of epileptic brain states across species. Sci. Rep.13, 13436. 10.1038/s41598-023-39867-z (2023). PubMed PMC

Chang, W.-C. et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat. Neurosci.21, 1742–1752. 10.1038/s41593-018-0278-y (2018). PubMed PMC

Maturana, M. I. et al. Critical slowing down as a biomarker for seizure susceptibility. Nat. Commun.11, 2172. 10.1038/s41467-020-15908-3 (2020). PubMed PMC

Rummel, C. et al. Resected brain tissue, seizure onset zone and quantitative EEG measures: Towards prediction of post-surgical seizure control. PLoS ONE10, e0141023. 10.1371/journal.pone.0141023 (2015). PubMed PMC

Goodfellow, M. et al. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep.6, 29215. 10.1038/srep29215 (2016). PubMed PMC

Kudlacek, J. et al. Long-term seizure dynamics are determined by the nature of seizures and the mutual interactions between them. Neurobiol. Dis.154, 105347. 10.1016/j.nbd.2021.105347 (2021). PubMed

Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents-eeg, ecog, lfp and spikes. Nat. Rev. Neurosci.13, 407–420 (2012). PubMed PMC

Young, J. J. et al. Quantitative signal characteristics of electrocorticography and stereoelectroencephalography: The effect of contact depth. J. Clin. Neurophysiol.36, 195–203 (2019). PubMed PMC

Mathews, C. G., Lesku, J. A., Lima, S. L. & Amlaner, C. J. Asynchronous eye closure as an anti-predator behavior in the western fence lizard (sceloporus occidentalis). Ethology112, 286–292 (2006).

Rattenborg, N. C., Amlaner, C. J. & Lima, S. L. Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev.24, 817–842 (2000). PubMed

Haugland, S. W. The changing notion of chimera states, a critical review. J. Phys.: Complexity2, 032001 (2021).

Haugland, S. W., Schmidt, L. & Krischer, K. Self-organized alternating chimera states in oscillatory media. Sci. Rep.5, 9883 (2015). PubMed PMC

Ramlow, L. et al. Partial synchronization in empirical brain networks as a model for unihemispheric sleep. Europhys. Lett.126, 50007 (2019).

Majhi, S., Bera, B. K., Ghosh, D. & Perc, M. Chimera states in neuronal networks: A review. Phys. Life Rev.28, 100–121 (2019). PubMed

Kang, L., Tian, C., Huo, S. & Liu, Z. A two-layered brain network model and its chimera state. Sci. Rep.9, 14389 (2019). PubMed PMC

Hizanidis, J., Kouvaris, N. E., Zamora-López, G., Díaz-Guilera, A. & Antonopoulos, C. G. Chimera-like states in modular neural networks. Sci. Rep.6, 19845 (2016). PubMed PMC

Omel’chenko, O. E. The mathematics behind chimera states. Nonlinearity31, R121 (2018).

Saggio, M. L. et al. A taxonomy of seizure dynamotypes. Elife9, e55632 (2020). PubMed PMC

Fisher, R. S. et al. Operational classification of seizure types by the international league against epilepsy: Position paper of the ilae commission for classification and terminology. Epilepsia58, 522–530 (2017). PubMed

Burelo, K., Sharifshazileh, M., Indiveri, G. & Sarnthein, J. Automatic detection of high-frequency oscillations with neuromorphic spiking neural networks. Front. Neurosci.16, 861480 (2022). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...