Amplitude entropy captures chimera resembling behavior in the altered brain dynamics during seizures
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-32608S
Czech Science Foundation
21-32608S
Czech Science Foundation
21-32608S
Czech Science Foundation
80120
Charles University Grant Agency
RVO:67985807
Institute of Computer Science of the Czech Academy of Sciences
RVO:67985807
Institute of Computer Science of the Czech Academy of Sciences
RVO:67985807
Institute of Computer Science of the Czech Academy of Sciences
CZ.02.01.01/00/22_008/0004643
ERDF-Project Brain dynamics
CZ.02.01.01/00/22_008/0004643
ERDF-Project Brain dynamics
PubMed
40268994
PubMed Central
PMC12019240
DOI
10.1038/s41598-025-97854-y
PII: 10.1038/s41598-025-97854-y
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- entropie MeSH
- epilepsie parciální * patofyziologie MeSH
- lidé MeSH
- mozek * patofyziologie MeSH
- záchvaty * patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Epilepsy is a neurological disease characterized by epileptic seizures, which commonly manifest with pronounced frequency and amplitude changes in the EEG signal. In the case of focal seizures, initially localized pathological activity spreads from a so-called "onset zone" to a wider network of brain areas. Chimeras, defined as states of simultaneously occurring coherent and incoherent dynamics in symmetrically coupled networks are increasingly invoked for characterization of seizures. In particular, chimera-like states have been observed during the transition from a normal (asynchronous) to a seizure (synchronous) network state. However, chimeras in epilepsy have only been investigated with respect to the varying phases of oscillators. We propose a novel method to capture the characteristic pronounced changes in the recorded EEG amplitude during seizures by estimating chimera-like states directly from the signals in a frequency- and time-resolved manner. We test the method on a publicly available intracranial EEG dataset of 16 patients with focal epilepsy. We show that the proposed measure, titled Amplitude Entropy, is sensitive to the altered brain dynamics during seizure, demonstrating its significant increases during seizure as compared to before and after seizure. This finding is robust across patients, their seizures, and different frequency bands. In the future, Amplitude Entropy could serve not only as a feature for seizure detection, but also help in characterizing amplitude chimeras in other networked systems with characteristic amplitude dynamics.
Department of Physiology 2nd Faculty of Medicine Charles University Prague 150 06 Czech Republic
Institute of Neuroinformatics University of Zurich and ETH Zurich Zurich Switzerland
National Institute of Mental Health Klecany 250 67 Czech Republic
Zobrazit více v PubMed
Pecora, L. M. & Carroll, T. L. Synchronization in chaotic systems. Phys. Rev. Lett.64, 821–824. 10.1103/PhysRevLett.64.821 (1990). PubMed
Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: a universal concept in nonlinear sciences. No. 12 in The Cambridge nonlinear science series (Cambridge University Press, Cambridge, 2001).
Engel, A. K. & Singer, W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn. Sci.5, 16–25 (2001). PubMed
Ward, L. M. Synchronous neural oscillations and cognitive processes. Trends Cogn. Sci.7, 553–559 (2003). PubMed
Uhlhaas, P. J. & Singer, W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron52, 155–168 (2006). PubMed
Shorvon, S. et al. (eds) Oxford Textbook of Epilepsy and Epileptic Seizures (Oxford University Press, Oxford, 2012).
Fisher, R. S. et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia55, 475–482. 10.1111/epi.12550 (2014). PubMed
Penfield, W. & Jasper, H. Epilepsy and the functional anatomy of the human brain. JAMA155, 86. 10.1001/jama.1954.03690190092039 (1954).
Mormann, F., Lehnertz, K., David, P. & Elger, C. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D Nonlinear Phenomena144, 358–369. 10.1016/S0167-2789(00)00087-7 (2000).
Mormann, F. et al. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res.53, 173–185. 10.1016/S0920-1211(03)00002-0 (2003). PubMed
Espinoso, A. & Andrzejak, R. G. Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients. Phys. Rev. E105, 034212. 10.1103/PhysRevE.105.034212 (2022). PubMed
Kuhlmann, L. et al. Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons. Epilepsy Res.91, 214–231. 10.1016/j.eplepsyres.2010.07.014 (2010). PubMed
Jiruska, P. et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses: Synchronization in epilepsy. J. Physiol.591, 787–797. 10.1113/jphysiol.2012.239590 (2013). PubMed PMC
Jouny, C. C. & Bergey, G. K. Characterization of early partial seizure onset: Frequency, complexity and entropy. Clin. Neurophysiol.123, 658–669 (2012). PubMed PMC
Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. Seizure prediction: The long and winding road. Brain130, 314–333. 10.1093/brain/awl241 (2007). PubMed
Kuhlmann, L., Lehnertz, K., Richardson, M. P., Schelter, B. & Zaveri, H. P. Seizure prediction - ready for a new era. Nat. Rev. Neurol.14, 618–630. 10.1038/s41582-018-0055-2 (2018). PubMed
Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci.15, 683–695. 10.1038/nrn3801 (2014). PubMed
Moraes, M. F. D., de Castro Medeiros, D., Mourao, F. A. G., Cancado, S. A. V. & Cota, V. R. Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy Behav.121, 106838. 10.1016/j.yebeh.2019.106838 (2021). PubMed
Kalitzin, S. et al. Epilepsy as a manifestation of a multistate network of oscillatory systems. Neurobiol. Dis.130, 104488. 10.1016/j.nbd.2019.104488 (2019). PubMed
Engel, J., Stern, J. M., Bragin, A. & Mody, I. Connectomics and epilepsy: Current Opinion in Neurology26, 186–194. 10.1097/WCO.0b013e32835ee5b8 (2013). PubMed PMC
Da Silva, F. H. L., Gorter, J. A. & Wadman, W. J. Epilepsy as a dynamic disease of neuronal networks. In Handbook of Clinical Neurology107, 35–62. 10.1016/B978-0-444-52898-8.00003-3 (Elsevier, 2012). PubMed
Dallmer-Zerbe, I., Jiruska, P. & Hlinka, J. Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy. Epilepsia10.1111/epi.17690 (2023). PubMed
Zakharova, A. Chimera patterns in networks (Springer, 2020).
Kuramoto, Y. & Battogtokh, D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenomena Complex Syst.5, 380–385 (2002).
Abrams, D. M. & Strogatz, S. H. Chimera states for coupled oscillators. Phys. Rev. Lett.93, 174102. 10.1103/PhysRevLett.93.174102 (2004). PubMed
Parastesh, F. et al. Chimeras. Phys. Rep.898, 1–114. 10.1016/j.physrep.2020.10.003 (2021).
Ferré, M. Critical visit to the chimera world. Chaos, Solitons Fractals166, 112991 (2023).
Andrzejak, R. G., Rummel, C., Mormann, F. & Schindler, K. All together now: Analogies between chimera state collapses and epileptic seizures. Sci. Rep.6, 23000. 10.1038/srep23000 (2016). PubMed PMC
Lainscsek, C., Rungratsameetaweemana, N., Cash, S. S. & Sejnowski, T. J. Cortical chimera states predict epileptic seizures. Chaos: Interdis. J. Nonlinear Sci.29, 121106. 10.1063/1.5139654 (2019). PubMed PMC
Gerster, M. et al. FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos: Interdis. J. Nonlinear Sci.30, 123130. 10.1063/5.0021420 (2020). PubMed
Chouzouris, T. et al. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity. Chaos: Interdis. J. Nonlinear Sci.28, 045112. 10.1063/1.5009812 (2018). PubMed
Škoch, A. et al. Human brain structural connectivity matrices-ready for modelling. Sci. Data9, 486. 10.1038/s41597-022-01596-9 (2022). PubMed PMC
Onojima, T. & Kitajo, K. A state-informed stimulation approach with real-time estimation of the instantaneous phase of neural oscillations by a kalman filter. J. Neural Eng.18, 066001. 10.1088/1741-2552/ac2f7b (2021). PubMed
Zakharova, A., Kapeller, M. & Schöll, E. Chimera death: Symmetry breaking in dynamical networks. Phys. Rev. Lett.112, 154101. 10.1103/PhysRevLett.112.154101 (2014). PubMed
Zakharova, A., Kapeller, M. & Schöll, E. Amplitude chimeras and chimera death in dynamical networks. J. Phys.: Conf. Ser.727, 012018. 10.1088/1742-6596/727/1/012018 (2016).
Fisher, R. S., Scharfman, H. E. & DeCurtis, M. How can we identify ictal and interictal abnormal activity? Issues in clinical epileptology: A view from the bench 3–23 (2014). PubMed PMC
Cámpora, N. E., Mininni, C. J., Kochen, S. & Lew, S. E. Seizure localization using pre ictal phase-amplitude coupling in intracranial electroencephalography. Sci. Rep.9, 20022 (2019). PubMed PMC
Rungratsameetaweemana, N. et al. Brain network dynamics codify heterogeneity in seizure evolution. Brain Commun.4, fcac234 (2022). PubMed PMC
SWEC, I. B. & ISL, E. Z. SWEC-ETHZ iEEG Database.
Burrello, A., Schindler, K., Benini, L. & Rahimi, A. One-shot Learning for iEEG Seizure Detection Using End-to-end Binary Operations: Local Binary Patterns with Hyperdimensional Computing. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–4, 10.1109/BIOCAS.2018.8584751 (IEEE, Cleveland, OH, 2018).
Burrello, A., Schindler, K., Benini, L. & Rahimi, A. Hyperdimensional computing with local binary patterns: one-shot learning of seizure onset and identification of ictogenic brain regions using short-time iEEG recordings. IEEE Trans. Biomed. Eng.67, 601–613. 10.1109/TBME.2019.2919137 (2020). PubMed
Banerjee, T., Biswas, D., Ghosh, D., Schöll, E. & Zakharova, A. Networks of coupled oscillators: From phase to amplitude chimeras. Chaos: Interdis. J. Nonlinear Sci.28, 113124. 10.1063/1.5054181 (2018). PubMed
Huang, N. E. Hilbert-Huang transform and its applications, vol. 16 (World scientific, 2014).
Freeman, W. J. Origin, structure, and role of background eeg activity part 1 analytic amplitude. Clin. Neurophysiol.115, 2077–2088 (2004). PubMed
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J.27, 379–423 (1948).
Schindler, K., Leung, H., Elger, C. E. & Lehnertz, K. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain130, 65–77. 10.1093/brain/awl304 (2006). PubMed
Inc., T. M. Matlab version: 9.13.0 (r2020b) (2020).
West, B. T., Welch, K. B. & Galecki, A. T. Linear mixed models: a practical guide using statistical software (Chapman and Hall/CRC, 2022).
Perucca, P., Dubeau, F. & Gotman, J. Intracranial electroencephalographic seizure-onset patterns: Effect of underlying pathology. Brain137, 183–196 (2014). PubMed
Espinoso, A., Leguia, M. G., Rummel, C., Schindler, K. & Andrzejak, R. G. The part and the whole: How single nodes contribute to large-scale phase-locking in functional EEG networks. Clin. Neurophysiol.168, 178–192. 10.1016/j.clinph.2024.09.008 (2024). PubMed
Dallmer-Zerbe, I. et al. Computational modeling allows unsupervised classification of epileptic brain states across species. Sci. Rep.13, 13436. 10.1038/s41598-023-39867-z (2023). PubMed PMC
Chang, W.-C. et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat. Neurosci.21, 1742–1752. 10.1038/s41593-018-0278-y (2018). PubMed PMC
Maturana, M. I. et al. Critical slowing down as a biomarker for seizure susceptibility. Nat. Commun.11, 2172. 10.1038/s41467-020-15908-3 (2020). PubMed PMC
Rummel, C. et al. Resected brain tissue, seizure onset zone and quantitative EEG measures: Towards prediction of post-surgical seizure control. PLoS ONE10, e0141023. 10.1371/journal.pone.0141023 (2015). PubMed PMC
Goodfellow, M. et al. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep.6, 29215. 10.1038/srep29215 (2016). PubMed PMC
Kudlacek, J. et al. Long-term seizure dynamics are determined by the nature of seizures and the mutual interactions between them. Neurobiol. Dis.154, 105347. 10.1016/j.nbd.2021.105347 (2021). PubMed
Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents-eeg, ecog, lfp and spikes. Nat. Rev. Neurosci.13, 407–420 (2012). PubMed PMC
Young, J. J. et al. Quantitative signal characteristics of electrocorticography and stereoelectroencephalography: The effect of contact depth. J. Clin. Neurophysiol.36, 195–203 (2019). PubMed PMC
Mathews, C. G., Lesku, J. A., Lima, S. L. & Amlaner, C. J. Asynchronous eye closure as an anti-predator behavior in the western fence lizard (sceloporus occidentalis). Ethology112, 286–292 (2006).
Rattenborg, N. C., Amlaner, C. J. & Lima, S. L. Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev.24, 817–842 (2000). PubMed
Haugland, S. W. The changing notion of chimera states, a critical review. J. Phys.: Complexity2, 032001 (2021).
Haugland, S. W., Schmidt, L. & Krischer, K. Self-organized alternating chimera states in oscillatory media. Sci. Rep.5, 9883 (2015). PubMed PMC
Ramlow, L. et al. Partial synchronization in empirical brain networks as a model for unihemispheric sleep. Europhys. Lett.126, 50007 (2019).
Majhi, S., Bera, B. K., Ghosh, D. & Perc, M. Chimera states in neuronal networks: A review. Phys. Life Rev.28, 100–121 (2019). PubMed
Kang, L., Tian, C., Huo, S. & Liu, Z. A two-layered brain network model and its chimera state. Sci. Rep.9, 14389 (2019). PubMed PMC
Hizanidis, J., Kouvaris, N. E., Zamora-López, G., Díaz-Guilera, A. & Antonopoulos, C. G. Chimera-like states in modular neural networks. Sci. Rep.6, 19845 (2016). PubMed PMC
Omel’chenko, O. E. The mathematics behind chimera states. Nonlinearity31, R121 (2018).
Saggio, M. L. et al. A taxonomy of seizure dynamotypes. Elife9, e55632 (2020). PubMed PMC
Fisher, R. S. et al. Operational classification of seizure types by the international league against epilepsy: Position paper of the ilae commission for classification and terminology. Epilepsia58, 522–530 (2017). PubMed
Burelo, K., Sharifshazileh, M., Indiveri, G. & Sarnthein, J. Automatic detection of high-frequency oscillations with neuromorphic spiking neural networks. Front. Neurosci.16, 861480 (2022). PubMed PMC