Computational modeling allows unsupervised classification of epileptic brain states across species
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37596382
PubMed Central
PMC10439162
DOI
10.1038/s41598-023-39867-z
PII: 10.1038/s41598-023-39867-z
Knihovny.cz E-zdroje
- MeSH
- elektrokortikografie MeSH
- epilepsie * MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mozek * MeSH
- počítačová simulace MeSH
- srdeční elektrofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Current advances in epilepsy treatment aim to personalize and responsively adjust treatment parameters to overcome patient heterogeneity in treatment efficiency. For tailoring treatment to the individual and the current brain state, tools are required that help to identify the patient- and time-point-specific parameters of epilepsy. Computational modeling has long proven its utility in gaining mechanistic insight. Recently, the technique has been introduced as a diagnostic tool to predict individual treatment outcomes. In this article, the Wendling model, an established computational model of epilepsy dynamics, is used to automatically classify epileptic brain states in intracranial EEG from patients (n = 4) and local field potential recordings from in vitro rat data (high-potassium model of epilepsy, n = 3). Five-second signal segments are classified to four types of brain state in epilepsy (interictal, preonset, onset, ictal) by comparing a vector of signal features for each data segment to four prototypical feature vectors obtained by Wendling model simulations. The classification result is validated against expert visual assessment. Model-driven brain state classification achieved a classification performance significantly above chance level (mean sensitivity 0.99 on model data, 0.77 on rat data, 0.56 on human data in a four-way classification task). Model-driven prototypes showed similarity with data-driven prototypes, which we obtained from real data for rats and humans. Our results indicate similar electrophysiological patterns of epileptic states in the human brain and the animal model that are well-reproduced by the computational model, and captured by a key set of signal features, enabling fully automated and unsupervised brain state classification in epilepsy.
Department of Physiology 2nd Faculty of Medicine Charles University 150 06 Prague Czech Republic
National Institute of Mental Health 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Billakota S, Devinsky O, Kim K-W. Why we urgently need improved epilepsy therapies for adult patients. Neuropharmacology. 2020;170:107855. doi: 10.1016/j.neuropharm.2019.107855. PubMed DOI
Cook MJ, et al. Human focal seizures are characterized by populations of fixed duration and interval. Epilepsia. 2016;57:359–368. doi: 10.1111/epi.13291. PubMed DOI
Pitkänen A, et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016;15:843–856. doi: 10.1016/S1474-4422(16)00112-5. PubMed DOI
Chang W-C, et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat. Neurosci. 2018;21:1742–1752. doi: 10.1038/s41593-018-0278-y. PubMed DOI
Jiruska P, Powell AD, Deans JK, Jefferys JG. Effects of direct brain stimulation depend on seizure dynamics: Brain Stimulation Depends on Seizure Dynamics. Epilepsia. 2010;51:93–97. doi: 10.1111/j.1528-1167.2010.02619.x. PubMed DOI
Rosenow F, et al. Personalized translational epilepsy research—Novel approaches and future perspectives. Epilepsy Behav. 2017;76:13–18. doi: 10.1016/j.yebeh.2017.06.041. PubMed DOI
Nagaraj V, et al. Future of seizure prediction and intervention: Closing the loop. J. Clin. Neurophysiol. 2015;32:194–206. doi: 10.1097/WNP.0000000000000139. PubMed DOI PMC
Falcon MI, Jirsa VK, Solodkin A. A new neuroinformatics approach to personalized medicine in neurology: The virtual brain. Curr. Opin. Neurol. 2016;29:429–436. doi: 10.1097/WCO.0000000000000344. PubMed DOI PMC
Moraes MFD, de Castro Medeiros D, Mourao FAG, Cancado SAV, Cota VR. Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy & Behavior. 2021;121:106838. doi: 10.1016/j.yebeh.2019.106838. PubMed DOI
Cook MJ, et al. The dynamics of the epileptic brain reveal long-memory processes. Front. Neurol. 2014 doi: 10.3389/fneur.2014.00217. PubMed DOI PMC
Karoly PJ, et al. Circadian and circaseptan rhythms in human epilepsy: A retrospective cohort study. Lancet Neurol. 2018;17:977–985. doi: 10.1016/S1474-4422(18)30274-6. PubMed DOI
Baud MO, et al. Multi-day rhythms modulate seizure risk in epilepsy. Nat. Commun. 2018;9:88. doi: 10.1038/s41467-017-02577-y. PubMed DOI PMC
Kudlacek J, et al. Long-term seizure dynamics are determined by the nature of seizures and the mutual interactions between them. Neurobiol. Dis. 2021;154:105347. doi: 10.1016/j.nbd.2021.105347. PubMed DOI
Maturana MI, et al. Critical slowing down as a biomarker for seizure susceptibility. Nat. Commun. 2020;11:2172. doi: 10.1038/s41467-020-15908-3. PubMed DOI PMC
Schroeder GM, et al. Seizure pathways change on circadian and slower timescales in individual patients with focal epilepsy. Proc. Natl. Acad. Sci. 2020;117:11048–11058. doi: 10.1073/pnas.1922084117. PubMed DOI PMC
Pérez-Cervera A, Hlinka J. Perturbations both trigger and delay seizures due to generic properties of slow-fast relaxation oscillators. PLOS Comput. Biol. 2021;17:e1008521. doi: 10.1371/journal.pcbi.1008521. PubMed DOI PMC
Sinha N, et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain. 2017;140:319–332. doi: 10.1093/brain/aww299. PubMed DOI PMC
Goodfellow M, et al. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep. 2016;6:29215. doi: 10.1038/srep29215. PubMed DOI PMC
Laiou P, et al. Quantification and selection of ictogenic zones in epilepsy surgery. Front. Neurol. 2019;10:1045. doi: 10.3389/fneur.2019.01045. PubMed DOI PMC
Saggio ML, et al. A taxonomy of seizure dynamotypes. eLife. 2020;9:e55632. doi: 10.7554/eLife.55632. PubMed DOI PMC
McKenna T, McMullen T, Shlesinger M. The brain as a dynamic physical system. Neuroscience. 1994;60:587–605. doi: 10.1016/0306-4522(94)90489-8. PubMed DOI
Izhikevich EM. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press; 2006.
Breakspear M. Dynamic models of large-scale brain activity. Nat. Neurosci. 2017;20:340–352. doi: 10.1038/nn.4497. PubMed DOI
Haken, H. & Haken, H. Modeling the brain. A first attempt: The brain as a dynamical system. in Principles of Brain Functioning. Vol. 67. 31–33. 10.1007/978-3-642-79570-1_4 (Springer, 1996).
Poulet JFA, Crochet S. The cortical states of wakefulness. Front. Syst. Neurosci. 2019;12:64. doi: 10.3389/fnsys.2018.00064. PubMed DOI PMC
Nguyen G, Postnova S. Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem. Pharmacol. 2021;191:114388. doi: 10.1016/j.bcp.2020.114388. PubMed DOI
La Camera G, Fontanini A, Mazzucato L. Cortical computations via metastable activity. Curr. Opin. Neurobiol. 2019;58:37–45. doi: 10.1016/j.conb.2019.06.007. PubMed DOI PMC
Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage. 2018;180:577–593. doi: 10.1016/j.neuroimage.2017.11.062. PubMed DOI
Kringelbach ML, Deco G. Brain states and transitions: Insights from computational neuroscience. Cell Rep. 2020;32:108128. doi: 10.1016/j.celrep.2020.108128. PubMed DOI
Wang, Y., Hutchings, F. & Kaiser, M. Computational modeling of neurostimulation in brain diseases. in Progress in Brain Research. Vol. 222. 191–228. 10.1016/bs.pbr.2015.06.012 (Elsevier, 2015). PubMed
Lopes da Silva F, et al. Dynamical diseases of brain systems: Different routes to epileptic seizures. IEEE Trans. Biomed. Eng. 2003;50:540–548. doi: 10.1109/TBME.2003.810703. PubMed DOI
Kalitzin S, et al. Epilepsy as a manifestation of a multistate network of oscillatory systems. Neurobiol. Dis. 2019;130:104488. doi: 10.1016/j.nbd.2019.104488. PubMed DOI
Wendling F, Benquet P, Bartolomei F, Jirsa V. Computational models of epileptiform activity. J. Neurosci. Methods. 2016;260:233–251. doi: 10.1016/j.jneumeth.2015.03.027. PubMed DOI
Bernard, C., Naze, S., Proix, T. & Jirsa, V. K. Modern concepts of seizure modeling. in International Review of Neurobiology. Vol. 114. 121–153. 10.1016/B978-0-12-418693-4.00006-6 (Elsevier, 2014). PubMed
Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. Brain. 2014;137:2210–2230. doi: 10.1093/brain/awu133. PubMed DOI PMC
Jirsa VK, et al. The virtual epileptic patient: Individualized whole-brain models of epilepsy spread. NeuroImage. 2017;145:377–388. doi: 10.1016/j.neuroimage.2016.04.049. PubMed DOI
Dallmer-Zerbe, I., Jiruška, P. & Hlinka, J. Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy. Epilepsia. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/epi.17690. PubMed DOI
Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition: Epileptic activity explained by dendritic dis-inhibition. Eur. J. Neurosci. 2002;15:1499–1508. doi: 10.1046/j.1460-9568.2002.01985.x. PubMed DOI
Wendling F, Hernandez A, Bellanger J-J, Chauvel P, Bartolomei F. Interictal to ictal transition in human temporal lobe epilepsy: Insights from a computational model of intracerebral EEG. J. Clin. Neurophysiol. 2005;22:343–356. PubMed PMC
Song J, Li Q, Zhang B, Westover B, Zhang R. A new neural mass model driven method and its application in early epileptic seizure detection. IEEE Trans. Biomed. Eng. 2019 doi: 10.1109/TBME.2019.2957392. PubMed DOI PMC
Song J-L, et al. Seizure tracking of epileptic EEGs using a model-driven approach. J. Neural Eng. 2020;17:016024. doi: 10.1088/1741-2552/ab2409. PubMed DOI PMC
Fietkiewicz C, Loparo KA. Analysis and enhancements of a prolific macroscopic model of epilepsy. Scientifica. 2016;1–10:2016. doi: 10.1155/2016/3628247. PubMed DOI PMC
Beniczky S, et al. Automated seizure detection using wearable devices: A clinical practice guideline of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology. Clin. Neurophysiol. 2021;132:1173–1184. doi: 10.1016/j.clinph.2020.12.009. PubMed DOI
Ulate-Campos A, et al. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure. 2016;40:88–101. doi: 10.1016/j.seizure.2016.06.008. PubMed DOI
Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: The long and winding road. Brain. 2007;130:314–333. doi: 10.1093/brain/awl241. PubMed DOI
Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Seizure prediction—Ready for a new era. Nat. Rev. Neurol. 2018;14:618–630. doi: 10.1038/s41582-018-0055-2. PubMed DOI
Stirling RE, Cook MJ, Grayden DB, Karoly PJ. Seizure forecasting and cyclic control of seizures. Epilepsia. 2021 doi: 10.1111/epi.16541. PubMed DOI
Westmoreland BF. The EEG findings in extratemporal seizures. Epilepsia. 1998;39:S1–S8. doi: 10.1111/j.1528-1157.1998.tb05121.x. PubMed DOI
Lopez-Sola E, et al. A personalizable autonomous neural mass model of epileptic seizures. J. Neural Eng. 2022;19:055002. doi: 10.1088/1741-2552/ac8ba8. PubMed DOI
Eickhoff SB, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage. 2005;25:1325–1335. doi: 10.1016/j.neuroimage.2004.12.034. PubMed DOI