Critical slowing down as a biomarker for seizure susceptibility

. 2020 May 01 ; 11 (1) : 2172. [epub] 20200501

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32358560
Odkazy

PubMed 32358560
PubMed Central PMC7195436
DOI 10.1038/s41467-020-15908-3
PII: 10.1038/s41467-020-15908-3
Knihovny.cz E-zdroje

The human brain has the capacity to rapidly change state, and in epilepsy these state changes can be catastrophic, resulting in loss of consciousness, injury and even death. Theoretical interpretations considering the brain as a dynamical system suggest that prior to a seizure, recorded brain signals may exhibit critical slowing down, a warning signal preceding many critical transitions in dynamical systems. Using long-term intracranial electroencephalography (iEEG) recordings from fourteen patients with focal epilepsy, we monitored key signatures of critical slowing down prior to seizures. The metrics used to detect critical slowing down fluctuated over temporally long scales (hours to days), longer than would be detectable in standard clinical evaluation settings. Seizure risk was associated with a combination of these signals together with epileptiform discharges. These results provide strong validation of theoretical models and demonstrate that critical slowing down is a reliable indicator that could be used in seizure forecasting algorithms.

Zobrazit více v PubMed

Dumanis, S. B. et al. Seizure Forecasting from Idea to Reality—Outcomes of the My Seizure Gauge Epilepsy Innovation Institute Workshop (Society for Neuroscience, 2017). PubMed PMC

Kuhlmann L, et al. Seizure prediction—ready for a new era. Nat. Rev. Neurol. 2018;14:618–630. doi: 10.1038/s41582-018-0055-2. PubMed DOI

Freestone DR, Karoly PJ, Cook MJ. A forward-looking review of seizure prediction. Curr. Opin. Neurol. 2017;30:167–173. doi: 10.1097/WCO.0000000000000429. PubMed DOI

Freestone DR, et al. Seizure prediction: science fiction or soon to become reality? Curr. Neurol. Neurosci. Rep. 2015;15:73. doi: 10.1007/s11910-015-0596-3. PubMed DOI

Scheffer M, et al. Early-warning signals for critical transitions. Nature. 2009;461:53. doi: 10.1038/nature08227. PubMed DOI

Kuehn C. A mathematical framework for critical transitions: bifurcations, fast–slow systems and stochastic dynamics. Physica D. 2011;240:1020–1035. doi: 10.1016/j.physd.2011.02.012. DOI

Menck PJ, et al. How basin stability complements the linear-stability paradigm. Nat. Phys. 2013;9:89. doi: 10.1038/nphys2516. DOI

Dai L, et al. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science. 2012;336:1175–1177. doi: 10.1126/science.1219805. PubMed DOI

May RM, Levin SA, Sugihara G. Complex systems: ecology for bankers. Nature. 2008;451:893. doi: 10.1038/451893a. PubMed DOI

van de Leemput IA, et al. Critical slowing down as early warning for the onset and termination of depression. Proc. Natl Acad. Sci. USA. 2014;111:87–92. doi: 10.1073/pnas.1312114110. PubMed DOI PMC

Gautam SH, et al. Maximizing sensory dynamic range by tuning the cortical state to criticality. PLoS Comput. Biol. 2015;11:e1004576. doi: 10.1371/journal.pcbi.1004576. PubMed DOI PMC

Beggs JM, Plenz D. Neuronal avalanches in neocortical circuits. J. Neurosci. 2003;23:11167–11177. doi: 10.1523/JNEUROSCI.23-35-11167.2003. PubMed DOI PMC

Shew WL, et al. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 2009;29:15595–15600. doi: 10.1523/JNEUROSCI.3864-09.2009. PubMed DOI PMC

Meisel C, et al. Critical slowing down governs the transition to neuron spiking. PLoS Comput. Biol. 2015;11:e1004097. doi: 10.1371/journal.pcbi.1004097. PubMed DOI PMC

Kramer MA, et al. Human seizures self-terminate across spatial scales via a critical transition. Proc. Natl Acad. Sci. USA. 2012;109:21116–21121. doi: 10.1073/pnas.1210047110. PubMed DOI PMC

Meisel C, Kuehn C. Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures. PLoS ONE. 2012;7:e30371. doi: 10.1371/journal.pone.0030371. PubMed DOI PMC

da Silva FHL, et al. Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans. Biomed. Eng. 2003;50:540–548. doi: 10.1109/TBME.2003.810703. PubMed DOI

Negahbani E, et al. Noise-induced precursors of state transitions in the stochastic Wilson–Cowan model. J. Math. Neurosci. 2015;5:9. doi: 10.1186/s13408-015-0021-x. PubMed DOI PMC

Kalitzin SN, Velis DN, da Silva FHL. Stimulation-based anticipation and control of state transitions in the epileptic brain. Epilepsy Behav. 2010;17:310–323. doi: 10.1016/j.yebeh.2009.12.023. PubMed DOI

Milanowski P, Suffczynski P. Seizures start without common signatures of critical transition. Int. J. Neural Syst. 2016;26:1650053. doi: 10.1142/S0129065716500532. PubMed DOI

Jirsa VK, et al. On the nature of seizure dynamics. Brain. 2014;137:2210–2230. doi: 10.1093/brain/awu133. PubMed DOI PMC

Freestone DR, et al. Estimation of effective connectivity via data-driven neural modeling. Front. Neurosci. 2014;8:383. doi: 10.3389/fnins.2014.00383. PubMed DOI PMC

Aram P, et al. Model-based estimation of intra-cortical connectivity using electrophysiological data. NeuroImage. 2015;118:563–575. doi: 10.1016/j.neuroimage.2015.06.048. PubMed DOI

Cook MJ, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 2013;12:563–571. doi: 10.1016/S1474-4422(13)70075-9. PubMed DOI

Breakspear M. Dynamic models of large-scale brain activity. Nat. Neurosci. 2017;20:340. doi: 10.1038/nn.4497. PubMed DOI

Hartman P. On the local linearization of differential equations. Proc. Am. Math. Soc. 1963;14:568–573. doi: 10.1090/S0002-9939-1963-0152718-3. DOI

Alarcon G, et al. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr. Clin. Neurophysiol. 1995;94:326–337. doi: 10.1016/0013-4694(94)00286-T. PubMed DOI

Baud MO, et al. Multi-day rhythms modulate seizure risk in epilepsy. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-017-02577-y. PubMed DOI PMC

Karoly PJ, et al. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain. 2016;139:1066–1078. doi: 10.1093/brain/aww019. PubMed DOI

Stevens J, et al. Ultradian characteristics of spontaneous seizures discharges recorded by radio telemetry in man. Electroencephalogr. Clin. Neurophysiol. 1971;31:313–325. doi: 10.1016/0013-4694(71)90227-6. PubMed DOI

Haut SR. Seizure clustering. Epilepsy Behav. 2006;8:50–55. doi: 10.1016/j.yebeh.2005.08.018. PubMed DOI

Kiral-Kornek I, et al. Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine. 2018;27:103–111. doi: 10.1016/j.ebiom.2017.11.032. PubMed DOI PMC

Karoly PJ, et al. The circadian profile of epilepsy improves seizure forecasting. Brain. 2017;140:2169–2182. doi: 10.1093/brain/awx173. PubMed DOI

Kuhlmann L, et al. Epilepsyecosystem. org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG. Brain. 2018;141:2619–2630. PubMed PMC

Chang W-C, et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat. Neurosci. 2018;21:1742. doi: 10.1038/s41593-018-0278-y. PubMed DOI

Breakspear M, et al. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex. 2006;16:1296–1313. doi: 10.1093/cercor/bhj072. PubMed DOI

Medeiros DC, et al. Temporal rearrangement of pre-ictal PTZ induced spike discharges by low frequency electrical stimulation to the amygdaloid complex. Brain Stimul. 2014;7:170–178. doi: 10.1016/j.brs.2013.11.005. PubMed DOI

Martinerie J, et al. Epileptic seizures can be anticipated by non-linear analysis. Nat. Med. 1998;9:242–242. doi: 10.1038/nm0303-242. PubMed DOI

McSharry PE, Smith LA, Tarassenko L. Prediction of epileptic seizures: are nonlinear methods relevant? Nat. Med. 2003;9:241–242. doi: 10.1038/nm0303-241. PubMed DOI

Wilkat T, Rings T, Lehnertz K. No evidence for critical slowing down prior to human epileptic seizures. Chaos. 2019;29:091104. doi: 10.1063/1.5122759. PubMed DOI

Nurse ES, et al. Consistency of long-term subdural electrocorticography in humans. IEEE Trans. Biomed. Eng. 2018;65:344–352. doi: 10.1109/TBME.2017.2768442. PubMed DOI

Ung H, et al. Intracranial EEG fluctuates over months after implanting electrodes in human brain. J. Neural Eng. 2017;14:56011. doi: 10.1088/1741-2552/aa7f40. PubMed DOI PMC

Steyn-Ross, D. A. et al. in Modeling Phase Transitions in the Brain (Steyn-Ross, A. & Steyn-Ross, M.) 1–26 (Springer, 2010).

Cook MJ, et al. The dynamics of the epileptic brain reveal long-memory processes. Front. Neurol. 2014;5:217. PubMed PMC

Karoly, P. J. et al. Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study. Lancet Neurol.17, 977–985 (2018). PubMed

Johansson, D., Malmgren, K. & Murphy, M. A. Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: a mixed-methods systematic review. J. Neurol.265, 1740–1752 (2018). PubMed PMC

Bazil CW, et al. Patients with intractable epilepsy have low melatonin, which increases following seizures. Neurology. 2000;55:1746–1748. doi: 10.1212/WNL.55.11.1746. PubMed DOI PMC

Peled N, et al. Melatonin effect on seizures in children with severe neurologic deficit disorders. Epilepsia. 2001;42:1208–1210. doi: 10.1046/j.1528-1157.2001.28100.x. PubMed DOI

Meisel C, et al. Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl Acad. Sci. USA. 2015;112:14694–14699. doi: 10.1073/pnas.1513716112. PubMed DOI PMC

Griffiths G, Fox JT. Rhythm in epilepsy. Lancet. 1938;232:409–416. doi: 10.1016/S0140-6736(00)41614-4. DOI

Huberfeld G, et al. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat. Neurosci. 2011;14:627. doi: 10.1038/nn.2790. PubMed DOI

Rakers F, et al. Weather as a risk factor for epileptic seizures: a case‐crossover study. Epilepsia. 2017;58:1287–1295. doi: 10.1111/epi.13776. PubMed DOI

Baldin E, et al. Stress is associated with an increased risk of recurrent seizures in adults. Epilepsia. 2017;58:1037–1046. doi: 10.1111/epi.13741. PubMed DOI

Varela F, et al. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2001;2:229. doi: 10.1038/35067550. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...