Forecasting epileptic seizures with wearable devices: A hybrid short- and long-horizon pseudo-prospective approach
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
UH2 NS095495
NINDS NIH HHS - United States
UG3 NS123066
NINDS NIH HHS - United States
UH3 NS095495
NINDS NIH HHS - United States
NS123066
NIH HHS - United States
Epilepsy Foundation
R01 NS092882
NINDS NIH HHS - United States
PubMed
40411751
PubMed Central
PMC12344589
DOI
10.1111/epi.18466
Knihovny.cz E-zdroje
- Klíčová slova
- epilepsy, forecasting, machine learning, seizure, wearable,
- MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- epilepsie * patofyziologie diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nositelná elektronika * MeSH
- předpověď metody MeSH
- prospektivní studie MeSH
- srdeční frekvence fyziologie MeSH
- strojové učení MeSH
- záchvaty * diagnóza patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Seizure unpredictability can be debilitating and dangerous for people with epilepsy. Accurate seizure forecasters could improve quality of life for those with epilepsy but must be practical for long-term use. This study presents the first validation of a seizure-forecasting system using ultra-long-term, non-invasive wearable data. METHODS: Eleven participants with epilepsy were recruited for continuous monitoring, capturing heart rate and step count via wrist-worn devices and seizures via electroencephalography (average recording duration of 337 days). Two hybrid models-combining machine learning and cycle-based methods-were proposed to forecast seizures at both short (minutes) and long (up to 44 days) horizons. RESULTS: The Seizure Warning System (SWS), designed for forecasting near-term seizures, and the Seizure Risk System (SRS), designed for forecasting long-term risk, both outperformed traditional models. In addition, the SRS reduced high-risk time by 29% while increasing sensitivity by 11%. SIGNIFICANCE: These improvements mark a significant advancement in making seizure forecasting more practical and effective.
Department of Biomedical Engineering University of Melbourne Melbourne Victoria Australia
Department of Microsystems Engineering University of Freiburg Freiburg Germany
Department of Neurosurgery Epilepsy Center Medical Center University of Freiburg Freiburg Germany
Graeme Clark Institute University of Melbourne Melbourne Victoria Australia
Institute of Psychiatry Psychology and Neuroscience King's College London London UK
S Labs AI Pty Ltd Melbourne Australia
School of Engineering University of North Florida Jacksonville Florida USA
Zobrazit více v PubMed
Abramovici S, Bagić A. Epidemiology of epilepsy. Handb Clin Neurol. 2016;138:159–171. PubMed
Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–319. PubMed
Tian N, Boring M, Kobau R, Zack MM, Croft JB. Active Epilepsy and Seizure Control in Adults — United States, 2013 and 2015. MMWR Morb Mortal Wkly Rep. 2018;67(15):437–442. doi: 10.15585/mmwr.mm6715a1 PubMed DOI PMC
Deloitte Access Economics. The Economic Burden of Epilepsy in Australia, 2019–2020. Epilepsy; Australia; 2019.
Arthurs S, Zaveri HP, Frei MG, Osorio I. Patient and caregiver perspectives on seizure prediction. Epilepsy Behav. 2010;19(3):474–477. PubMed
Epilepsy Foundation. Ei2 Community Survey. Epilepsy Foundation; 2016:6. Accessed March 6, 2020. rajn
Schulze-Bonhage A, Sales F, Wagner K, et al. Views of patients with epilepsy on seizure prediction devices. Epilepsy Behav. 2010;18(4):388–396. PubMed
Dumanis SB, French JA, Bernard C, Worrell GA, Fureman BE. Seizure forecasting from idea to reality. Outcomes of the my seizure gauge epilepsy innovation institute workshop. eNeuro. 2017;4(6). PubMed PMC
Grzeskowiak CL, Dumanis SB. Seizure forecasting: patient and caregiver perspectives. Front Neurol. 2021;12:717428. PubMed PMC
Stirling RE, Cook MJ, Grayden DB, Karoly PJ. Seizure forecasting and cyclic control of seizures. Epilepsia. Published online 2020. PubMed
Karoly PJ, Eden D, Nurse ES, et al. Cycles of self-reported seizure likelihood correspond to yield of diagnostic epilepsy monitoring. Epilepsia. 2021;62(2):416–425. PubMed
Naim-Feil J, Stirling RE, Karoly PJ, et al. Pro-ictal EEG scheduling improves the yield of epilepsy monitoring: Validating the use of multiday seizure cycles to optimize video-EEG timing. Ann Neurol. Published online 2024. doi: 10.1002/ana.27078 PubMed DOI
Stirling RE, Nurse ES, Payne D, et al. User experience of a seizure risk forecasting app: a mixed methods investigation. Epilepsy Behav. Published online 2024. PubMed
Brinkmann BH, Wagenaar J, Abbot D, et al. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain. 2016;139(6):1713–1722. PubMed PMC
Cook MJ, O’Brien TJ, Berkovic SF, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 2013;12(6):563–571. doi: 10.1016/S1474-4422(13)70075-9 PubMed DOI
Karoly PJ, Goldenholz DM, Freestone DR, et al. Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study. Lancet Neurol. 2018;17(11):977–985. PubMed
Kuhlmann L, Karoly P, Freestone DR, et al. Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG. Brain. Published online August 8, 2018. doi: 10.1093/brain/awy210 PubMed DOI PMC
Maturana MI, Meisel C, Dell K, et al. Critical slowing as a biomarker for seizure susceptibility. Nat Commun. Published online 2020. PubMed PMC
Nejedly P, Kremen V, Sladky V, et al. Deep-learning for seizure forecasting in canines with epilepsy. J Neural Eng. 2019;16(3):036031. doi: 10.1088/1741-2552/ab172d PubMed DOI
Kremen V, Brinkmann BH, Kim I, et al. Integrating Brain Implants With Local and Distributed Computing Devices: A Next Generation Epilepsy Management System. IEEE J Transl Eng Health Med. 2018;6:1–12. doi: 10.1109/JTEHM.2018.2869398 PubMed DOI PMC
Pal Attia T, Crepeau D, Kremen V, et al. Epilepsy Personal Assistant Device-A Mobile Platform for Brain State, Dense Behavioral and Physiology Tracking and Controlling Adaptive Stimulation. Front Neurol. 2021;12:704170–704170. doi: 10.3389/fneur.2021.704170 PubMed DOI PMC
Leguia MG, Rao VR, Tcheng TK, et al. Learning to generalize seizure forecasts. Epilepsia. Published online 2022. PubMed
Proix T, Truccolo W, Leguia MG, et al. Forecasting seizure risk in adults with focal epilepsy: a development and validation study. Lancet Neurol. 2021;20(2):127–135. doi: 10.1016/S1474-4422(20)30396-3 PubMed DOI PMC
Pal Attia T, Viana PF, Nasseri M, et al. Seizure forecasting using minimally invasive, ultra-long-term subcutaneous EEG: Generalizable cross-patient models. Epilepsia. Published online May 4, 2022:epi.17265. doi: 10.1111/epi.17265 PubMed DOI PMC
Stirling RE, Maturana MI, Karoly PJ, et al. Seizure Forecasting Using a Novel Sub-Scalp Ultra-Long Term EEG Monitoring System. Front Neurol. 2021;12:713794. doi: 10.3389/fneur.2021.713794 PubMed DOI PMC
Viana PF, Pal Attia T, Nasseri M, et al. Seizure forecasting using minimally invasive, ultra-long-term subcutaneous electroencephalography: Individualized intrapatient models. Epilepsia. Published online April 16, 2022:epi.17252. doi: 10.1111/epi.17252 PubMed DOI PMC
Prathaban BP, Balasubramanian R, Kalpana R. A wearable ForeSeiz headband for forecasting real-time epileptic seizures. IEEE Sens J. 2021;21(23):26892–26901.
Brinkmann BH, Karoly PJ, Nurse ES, et al. Seizure Diaries and Forecasting With Wearables: Epilepsy Monitoring Outside the Clinic. Front Neurol. 2021;12:690404. doi: 10.3389/fneur.2021.690404 PubMed DOI PMC
Janse SA, Dumanis SB, Huwig T, Hyman S, Fureman BE, Bridges JFP. Patient and caregiver preferences for the potential benefits and risks of a seizure forecasting device: A best–worst scaling. Epilepsy Behav. 2019;96:183–191. doi: 10.1016/j.yebeh.2019.04.018 PubMed DOI
Bruno E, Simblett S, Lang A, et al. Wearable technology in epilepsy: The views of patients, caregivers, and healthcare professionals. Epilepsy Behav. 2018;85:141–149. PubMed
Hoppe C, Feldmann M, Blachut B, Surges R, Elger CE, Helmstaedter C. Novel techniques for automated seizure registration: patients’ wants and needs. Epilepsy Behav. 2015;52:1–7. PubMed
Nasseri M, Nurse E, Glasstetter M, et al. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia. 2020;61 Suppl 1:S25–S35. doi: 10.1111/epi.16527 PubMed DOI
Meisel C, El Atrache R, Jackson M, Schubach S, Ufongene C, Loddenkemper T. Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting. Epilepsia. 2020;61(12):2653–2666. PubMed
Nasseri M, Pal Attia T, Joseph B, et al. Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning. Sci Rep. 2021;11(1):1–9. PubMed PMC
Stirling RE, Grayden DB, D’Souza W, et al. Forecasting seizure likelihood with wearable technology. Front Neurol. 2021;12:704060. PubMed PMC
Xiong W, Stirling RE, Payne DE, et al. Forecasting seizure likelihood from cycles of self-reported events and heart rate: a prospective pilot study. EBioMedicine. 2023;93. PubMed PMC
Gregg NM, Pal Attia T, Nasseri M, et al. Seizure occurrence is linked to multiday cycles in diverse physiological signals. Epilepsia. 2023;64(6):1627–1639. PubMed PMC
Bruno E, Simblett S, Lang A, et al. Wearable technology in epilepsy: The views of patients, caregivers, and healthcare professionals. Epilepsy Behav. 2018;85:141–149. PubMed
Karoly PJ, Stirling RE, Freestone DR, et al. Multiday cycles of heart rate are associated with seizure likelihood: An observational cohort study. EBioMedicine. 2021;72:103619. PubMed PMC
Sladky V, Nejedly P, Mivalt F, et al. Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation. Brain Commun. 2022;4(3):fcac115. doi: 10.1093/braincomms/fcac115 PubMed DOI PMC
Nelson BW, Allen NB. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. JMIR MHealth UHealth. 2019;7(3):e10828. doi: 10.2196/10828 PubMed DOI PMC
Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR. Accuracy of PurePulse photoplethysmography technology of Fitbit Charge 2 for assessment of heart rate during sleep. Chronobiol Int. 2019;36(7):927–933. doi: 10.1080/07420528.2019.1596947 PubMed DOI
Germini F, Noronha N, Debono VB, et al. Accuracy and Acceptability of Wrist-Wearable Activity-Tracking Devices: Systematic Review of the Literature. J Med Internet Res. 2022;24(1):e30791. doi: 10.2196/30791 PubMed DOI PMC
Gu F, Khoshelham K, Shang J, Yu F, Wei Z. Robust and accurate smartphone-based step counting for indoor localization. IEEE Sens J. 2017;17(11):3453–3460.
Nasseri M, Attia TP, Joseph B, et al. Non-invasive wearable seizure detection using long–short-term memory networks with transfer learning. J Neural Eng. 2021;18(5):056017. doi: 10.1088/1741-2552/abef8a PubMed DOI
Satopää VA, Baron J, Foster DP, Mellers BA, Tetlock PE, Ungar LH. Combining multiple probability predictions using a simple logit model. Int J Forecast. 2014;30(2):344–356.
Stirling RE, Maturana MI, Karoly PJ, et al. Seizure forecasting using a novel sub-scalp ultra-long term EEG monitoring system. Front Neurol. 2021;12:713794. PubMed PMC
Satopää VA, Baron J, Foster DP, Mellers BA, Tetlock PE, Ungar LH. Combining multiple probability predictions using a simple logit model. Int J Forecast. 2014;30(2):344–356.
Andrzejak RG, Mormann F, Kreuz T, et al. Testing the null hypothesis of the nonexistence of a preseizure state. Phys Rev E. 2003;67(1):010901. PubMed
Snyder DE, Echauz J, Grimes DB, Litt B. The statistics of a practical seizure warning system. J Neural Eng. 2008;5(4):392. PubMed PMC
Leguia MG, Andrzejak RG, Rummel C, et al. Seizure cycles in focal epilepsy. JAMA Neurol. 2021;78(4):454–463. PubMed PMC
Stirling RE, Hidajat CM, Grayden DB, et al. Sleep and seizure risk in epilepsy: bed and wake times are more important than sleep duration. Brain. 2023;146(7):2803–2813. PubMed PMC
Privitera M, Walters M, Lee I, et al. Characteristics of people with self-reported stress-precipitated seizures. Epilepsy Behav EB. 2014;41:74–77. doi: 10.1016/j.yebeh.2014.09.028 PubMed DOI
Billeci L, Marino D, Insana L, Vatti G, Varanini M. Patient-specific seizure prediction based on heart rate variability and recurrence quantification analysis. Biagini G, ed. PLOS ONE. 2018;13(9):e0204339. doi: 10.1371/journal.pone.0204339 PubMed DOI PMC
Patel AD, Moss R, Rust SW, et al. Patient-centered design criteria for wearable seizure detection devices. Epilepsy Behav. 2016;64:116–121. doi: 10.1016/j.yebeh.2016.09.012 PubMed DOI
Cui J, Viana PP, Pal Attia T, et al. Enhancing seizure forecasting by inegrating multiday seizure patterns with deep-learning model utilizing ultra long-term subcutaneous EEG. 2nd Int Conf Artif Intell Epilepsy Neurol Disroders. In Press.
Vossler DG. Forecasting seizure storms using epilepsy wristband sensors. Epilepsy Curr. 2021;21(2):99–101. PubMed PMC
Baud MO, Proix T, Gregg NM, et al. Seizure forecasting: bifurcations in the long and winding road. Epilepsia. Published online 2022. PubMed PMC
Chiang S, Moss R, Black AP, et al. Evaluation and recommendations for effective data visualization for seizure forecasting algorithms. JAMIA Open. 2021;4(1):ooab009. doi: 10.1093/jamiaopen/ooab009 PubMed DOI PMC
Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Seizure prediction—ready for a new era. Nat Rev Neurol. Published online 2018:1. PubMed
Duun-Henriksen J, Baud M, Richardson MP, et al. A new era in electroencephalographic monitoring? Subscalp devices for ultra–long-term recordings. Epilepsia. PubMed