Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
U24 NS063930
NINDS NIH HHS - United States
UH2 NS095495
NINDS NIH HHS - United States
R01 NS099348
NINDS NIH HHS - United States
R01 NS079533
NINDS NIH HHS - United States
R01 NS092882
NINDS NIH HHS - United States
PubMed
30101347
PubMed Central
PMC6136083
DOI
10.1093/brain/awy210
PII: 5066003
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- crowdsourcing metody MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- epilepsie patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek diagnostické zobrazování patofyziologie MeSH
- prediktivní hodnota testů MeSH
- předpověď metody MeSH
- prospektivní studie MeSH
- reprodukovatelnost výsledků MeSH
- záchvaty patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the 'Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge' conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.10.1093/brain/awy210_video1awy210media15817489051001.
Areté Associates 1550 Crystal Drive Suite 703 Arlington VA USA
Department of Medicine St Vincent's The University of Melbourne Parkville VIC Australia
Department of Neuroscience Brown University Providence Rhode Island USA
Department of Physics National University of Singapore Singapore
Irish Centre for Fetal and Neonatal Translational Research University College Cork Cork Ireland
Solverworld Suite 140 1337 Mass Ave Arlington Massachusetts USA
UCL Ear Institute 332 Gray's Inn Road London UK
University of Pennsylvania Penn Center for Neuroengineering and Therapeutics Philadelphia PA USA
Zobrazit více v PubMed
Barachant A, Bonnet S, Congedo M, Jutten C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 2013; 112: 172–8.
Baud MO, Kleen JK, Mirro EA, Andrechak JC, King-Stephens D, Chang EF et al. . Multi-day rhythms modulate seizure risk in epilepsy. Nat Commun 2018; 9: 88. PubMed PMC
Brinkmann BH, Wagenaar J, Abbot D, Adkins P, Bosshard SC, Chen M et al. . Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain 2016; 139 (Pt 6): 1713–22. PubMed PMC
Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016. ACM; 2016; p. 785–94.
Congedo M, Barachant A, Bhatia R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces 2017; 4: 155–174.
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20: 273–97.
Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G et al. . Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol 2013; 12: 563–71. PubMed
Dumanis SB, French JA, Bernard C, Worrell GA, Fureman BE. Seizure forecasting from idea to reality. Outcomes of the my seizure gauge epilepsy innovation institute workshop. eNeuro 2017; 4: ENEURO. 0349–17.2017. PubMed PMC
Duncan JS, Smith SJ, Forster A, Shorvon SD, Trimble MR. Effects of the removal of phenytoin, carbamazepine, and valproate on the electroencephalogram. Epilepsia 1989; 30: 590–6. PubMed
Freestone DR, Karoly PJ, Peterson AD, Kuhlmann L, Lai A, Goodarzy F et al. . Seizure prediction: science fiction or soon to become reality? Curr Neurol Neurosci Rep 2015; 15: 73. PubMed
Friedman JH.Greedy function approximation: a gradient boosting machine. Ann Stat 2001; 29: 1189–232.
Gadhoumi K, Lina JM, Mormann F, Gotman J. Seizure prediction for therapeutic devices: a review. J Neurosci Methods 2016; 260: 270–82. PubMed
Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn 2006; 63: 3–42.
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29–36. PubMed
Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983; 148: 839–43. PubMed
Hjorth B. EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 1970; 29: 306–10. PubMed
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997; 9: 1735–80. PubMed
Karoly P, Ung H, Grayden DB, Kuhlmann L, Leyde K, Cook MJ et al. . The Circadian profile of epilepsy improves seizure forecasting. Brain 2017; 140: 2169–82. PubMed
Kiral-Kornek I, Roy S, Nurse E, Mashford B, Karoly P, Carroll T et al. . Epileptic seizure prediction using big data and deep learning: toward a mobile system. EBioMedicine 2018; 27: 103–111. PubMed PMC
Kuhlmann L, Freestone D, Lai A, Burkitt AN, Fuller K, Grayden DB et al. . Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons. Epilepsy Res 2010; 91: 214–31. PubMed
Kuhlmann L, Grayden DB, Wendling F, Schiff SJ. Role of multiple-scale modeling of epilepsy in seizure forecasting. J Clin Neurophysiol 2015; 32: 220–6. PubMed PMC
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998; 86: 2278–324.
Mayaud L, Lai PS, Clifford GD, Tarassenko L, Celi LAG, Annane D. Dynamic data during hypotensive episode improves mortality predictions among patients with sepsis and hypotension. Crit Care Med 2013; 41: 954. PubMed PMC
Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. Brain 2007; 130 (Pt 2): 314–33. PubMed
Payne DE, Karoly PJ, Freestone DR, Boston R, D’Souza W, Nurse E et al. . Postictal suppression and seizure durations: a patient-specific, long-term iEEG analysis. Epilepsia 2018; 59: 1027–36. PubMed
Petrosian A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In: Computer-Based Medical Systems, 1995, Proceedings of the Eighth IEEE Symposium on; 1995. IEEE 1995; p. 212–7.
Schulze-Bonhage A, Kühn A. Unpredictability of seizures and the burden of epilepsy. In: Seizure prediction in epilepsy: from basic mechanisms to clinical applications. Weinheim: Wiley; 2008.
Snyder DE, Echauz J, Grimes DB, Litt B. The statistics of a practical seizure warning system. J Neural Eng 2008; 5: 392. PubMed PMC
Stacey WC, Litt B. Technology insight: neuroengineering and epilepsy—designing devices for seizure control. Nat Clin Pract Neurol 2008; 4: 190–201. PubMed PMC
Temko A, Lightbody G. Detecting neonatal seizures with computer algorithms. J Clin Neurophysiol 2016; 33: 3994–402. PubMed
Temko A, Thomas E, Marnane W, Lightbody G, Boylan G. EEG-based neonatal seizure detection with support vector machines. Clin Neurophysiol 2011; 122: 464–73. PubMed PMC
Truong ND, Nguyen AD, Kuhlmann L, Bonyadi MR, Yang J, Ippolito S et al. . Convolutional neural network for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw 2018; 105: 104–111. PubMed
Wiener M, Sommer FT, Ives ZG, Poldrack RA, Litt B. Enabling an open data ecosystem for the Neurosciences. Neuron 2016; 92: 617–21. PubMed
Winterhalder M, Maiwald T, Voss HU, Aschenbrenner-Scheibe R, Timmer J, Schulze-Bonhage A. The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods. Epilepsy Behav 2003; 4: 318–25. PubMed
Witten IH, Frank E, Hall MA, Pal CJ. Data mining: practical machine learning tools and techniques. Cambridge, MA: Morgan Kaufmann; 2016.