Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures

. 2021 Apr 25 ; 23 (5) : . [epub] 20210425

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33923035

Grantová podpora
GA19-16066S Grantová Agentura České Republiky
Praemium Academiae awarded to M. Palus Akademie Věd České Republiky

An information-theoretic approach for detecting causality and information transfer was applied to phases and amplitudes of oscillatory components related to different time scales and obtained using the wavelet transform from a time series generated by the Epileptor model. Three main time scales and their causal interactions were identified in the simulated epileptic seizures, in agreement with the interactions of the model variables. An approach consisting of wavelet transform, conditional mutual information estimation, and surrogate data testing applied to a single time series generated by the model was demonstrated to be successful in the identification of all directional (causal) interactions between the three different time scales described in the model. Thus, the methodology was prepared for the identification of causal cross-frequency phase-phase and phase-amplitude interactions in experimental and clinical neural data.

Zobrazit více v PubMed

Fisher R.S., Acevedo C., Arzimanoglou A., Bogacz A., Cross J.H., Elger C.E., Engel J., Jr., Forsgren L., French J.A., Glynn M., et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia. 2014;55:475–482. doi: 10.1111/epi.12550. PubMed DOI

Badawy R., Freestone D., Lai A., Cook M. Epilepsy: Ever-changing states of cortical excitability. Neuroscience. 2012;222:89–99. doi: 10.1016/j.neuroscience.2012.07.015. PubMed DOI

Beghi E., Carpio A., Forsgren L., Hesdorffer D.C., Malmgren K., Sander J.W., Tomson T., Hauser W.A. Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010;51:671–675. doi: 10.1111/j.1528-1167.2009.02285.x. PubMed DOI

Da Silva F.L., Blanes W., Kalitzin S.N., Parra J., Suffczynski P., Velis D.N. Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity. Epilepsia. 2003;44:72–83. doi: 10.1111/j.0013-9580.2003.12005.x. PubMed DOI

Jirsa V.K., Stacey W.C., Quilichini P.P., Ivanov A.I., Bernard C. On the nature of seizure dynamics. Brain. 2014;137:2210–2230. doi: 10.1093/brain/awu133. PubMed DOI PMC

Creaser J., Lin C., Ridler T., Brown J.T., D’Souza W., Seneviratne U., Cook M., Terry J.R., Tsaneva-Atanasova K. Domino-like transient dynamics at seizure onset in epilepsy. PLoS Comput. Biol. 2020;16:e1008206. doi: 10.1371/journal.pcbi.1008206. PubMed DOI PMC

Baier G., Goodfellow M., Taylor P., Wang Y., Garry D. The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Front. Physiol. 2012;3:281. doi: 10.3389/fphys.2012.00281. PubMed DOI PMC

Haghighi H.S., Markazi A. A new description of epileptic seizures based on dynamic analysis of a thalamocortical model. Sci. Rep. 2017;7:1–10. PubMed PMC

Pijn J.P.M., Velis D.N., van der Heyden M.J., DeGoede J., van Veelen C.W., da Silva F.H.L. Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings. Brain Topogr. 1997;9:249–270. doi: 10.1007/BF01464480. PubMed DOI

El Houssaini K., Bernard C., Jirsa V.K. The Epileptor model: A systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus and depolarization block. eNeuro. 2020;7:ENEURO.0485-18.2019. doi: 10.1523/ENEURO.0485-18.2019. PubMed DOI PMC

Courtiol J., Guye M., Bartolomei F., Petkoski S., Jirsa V.K. Dynamical mechanisms of interictal resting-state functional connectivity in epilepsy. J. Neurosci. 2020;40:5572–5588. doi: 10.1523/JNEUROSCI.0905-19.2020. PubMed DOI PMC

Chang W.C., Kudlacek J., Hlinka J., Chvojka J., Hadrava M., Kumpost V., Powell A.D., Janca R., Maturana M.I., Karoly P.J., et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat. Neurosci. 2018;21:1742–1752. doi: 10.1038/s41593-018-0278-y. PubMed DOI PMC

Paluš M. Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 2014;112:078702. doi: 10.1103/PhysRevLett.112.078702. PubMed DOI

Paluš M. Cross-scale interactions and information transfer. Entropy. 2014;16:5263–5289. doi: 10.3390/e16105263. DOI

Granger C.W. Time series analysis, cointegration, and applications. Am. Econ. Rev. 2004;94:421–425. doi: 10.1257/0002828041464669. DOI

Granger C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969;37:424–438. doi: 10.2307/1912791. DOI

Paluš M., Komárek V., Hrnčíř Z., Štěrbová K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E. 2001;63:046211. doi: 10.1103/PhysRevE.63.046211. PubMed DOI

Schreiber T. Measuring information transfer. Phys. Rev. Lett. 2000;85:461–464. doi: 10.1103/PhysRevLett.85.461. PubMed DOI

Paluš M., Vejmelka M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E. 2007;75:056211. doi: 10.1103/PhysRevE.75.056211. PubMed DOI

Barnett L., Barrett A.B., Seth A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009;103:238701. doi: 10.1103/PhysRevLett.103.238701. PubMed DOI

Canolty R.T., Knight R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 2010;14:506–515. doi: 10.1016/j.tics.2010.09.001. PubMed DOI PMC

Aru J., Aru J., Priesemann V., Wibral M., Lana L., Pipa G., Singer W., Vicente R. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 2015;31:51–61. doi: 10.1016/j.conb.2014.08.002. PubMed DOI

Lozano-Soldevilla D., Ter Huurne N., Oostenveld R. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front. Comput. Neurosci. 2016;10:87. doi: 10.3389/fncom.2016.00087. PubMed DOI PMC

Besserve M., Schölkopf B., Logothetis N.K., Panzeri S. Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis. J. Comput. Neurosci. 2010;29:547–566. doi: 10.1007/s10827-010-0236-5. PubMed DOI PMC

Jiang H., Bahramisharif A., van Gerven M.A.J., Jensen O. Distinct directional couplings between slow and fast gamma power to the phase of theta oscillations in the rat hippocampus. Eur. J. Neurosci. 2020;51:2070–2081. doi: 10.1111/ejn.14644. PubMed DOI

Martínez-Cancino R., Delorme A., Wagner J., Kreutz-Delgado K., Sotero R.C., Makeig S. What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals? Entropy. 2020;22:1262. doi: 10.3390/e22111262. PubMed DOI PMC

Cover T., Thomas J. Elements of Information Theory. J. Wiley; New York, NY, USA: 1991.

Watanabe S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 1960;4:66–82. doi: 10.1147/rd.41.0066. DOI

Garner W.R. Uncertainty and Structure as Psychological Concepts. Wiley; New York, NY, USA: 1962.

Fraser A.M. Information and entropy in strange attractors. IEEE Trans. Inf. Theory. 1989;35:245–262. doi: 10.1109/18.32121. DOI

Studený M., Vejnarová J. The multiinformation function as a tool for measuring stochastic dependence. In: Jordan M.I., editor. Learning in Graphical Models. Volume 89. Springer; Dordrecht, The Netherlands: 1998. pp. 261–297. NATO ASI Series (Series D: Behavioural and Social Sciences)

Stramaglia S., Cortes J.M., Marinazzo D. Synergy and redundancy in the Granger causal analysis of dynamical networks. New J. Phys. 2014;16:105003. doi: 10.1088/1367-2630/16/10/105003. DOI

Barrett A.B. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E. 2015;91:052802. doi: 10.1103/PhysRevE.91.052802. PubMed DOI

Lizier J.T., Bertschinger N., Jost J., Wibral M. Information decomposition of target effects from multi-source interactions: Perspectives on previous, current and future work. Entropy. 2018;20:307. doi: 10.3390/e20040307. PubMed DOI PMC

Paluš M. Detecting nonlinearity in multivariate time series. Phys. Lett. A. 1996;213:138–147. doi: 10.1016/0375-9601(96)00116-8. DOI

Paluš M., Albrecht V., Dvořák I. Information theoretic test for nonlinearity in time series. Phys. Lett. A. 1993;175:203–209. doi: 10.1016/0375-9601(93)90827-M. DOI

Gans F., Schumann A.Y., Kantelhardt J.W., Penzel T., Fietze I. Cross-modulated amplitudes and frequencies characterize interacting components in complex systems. Phys. Rev. Lett. 2009;102:098701. doi: 10.1103/PhysRevLett.102.098701. PubMed DOI

Heil C., Walnut D. Continuous and Discrete Wavelet Transforms. SIAM Rev. 1989;31:628–666. doi: 10.1137/1031129. DOI

Huang N.E., Wu Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008;46:RG2006. doi: 10.1029/2007RG000228. DOI

Paluš M., Novotná D. Enhanced Monte Carlo Singular System Analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlin. Process. Geophys. 2004;11:721–729. doi: 10.5194/npg-11-721-2004. DOI

Paluš M., Novotná D. Quasi-biennial oscillations extracted from the monthly NAO index and temperature records are phase-synchronized. Nonlin. Process. Geophys. 2006;13:287–296. doi: 10.5194/npg-13-287-2006. DOI

Pikovsky A., Rosenblum M., Kurths J. Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press; Cambridge, UK: 2001.

Torrence C., Compo G.P. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc. 1998;79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. DOI

Paluš M. Identifying and Quantifying Chaos by Using Information-Theoretic Functionals. In: Weigend A.S., Gershenfeld N.A., editors. Time Series Prediction: Forecasting the Future and Understanding the Past. Santa Fe Institute Studies in the Sciences of Complexity; Santa Fe, NM, USA: 1994. pp. 387–413.

Paluš M. Nonlinearity in normal human EEG: Cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol. Cybern. 1996;75:389–396. doi: 10.1007/s004220050304. PubMed DOI

Paluš M. Coarse-grained entropy rates for characterization of complex time series. Phys. D. 1996;93:64–77. doi: 10.1016/0167-2789(95)00301-0. DOI

Paluš M. Testing for nonlinearity using redundancies - quantitative and qualitative aspects. Phys. D. 1995;80:186–205. doi: 10.1016/0167-2789(95)90079-9. DOI

Hlaváčková-Schindler K., Paluš M., Vejmelka M., Bhattacharya J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007;441:1–46. doi: 10.1016/j.physrep.2006.12.004. DOI

Quiroga R.Q., Kraskov A., Kreuz T., Grassberger P. Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E. 2002;65:041903. doi: 10.1103/PhysRevE.65.041903. PubMed DOI

Jajcay N., Kravtsov S., Sugihara G., Tsonis A.A., Paluš M. Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Clim. Atmos. Sci. 2018;1:1–8. doi: 10.1038/s41612-018-0043-7. DOI

Paluš M., Krakovská A., Jakubík J., Chvosteková M. Causality, dynamical systems and the arrow of time. Chaos Interdiscip. J. Nonlinear Sci. 2018;28:075307. doi: 10.1063/1.5019944. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...