Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-16066S
Grantová Agentura České Republiky
Praemium Academiae awarded to M. Palus
Akademie Věd České Republiky
PubMed
33923035
PubMed Central
PMC8146730
DOI
10.3390/e23050526
PII: e23050526
Knihovny.cz E-zdroje
- Klíčová slova
- Granger causality, epilepsy model, information transfer, interactions, multiscale dynamics,
- Publikační typ
- časopisecké články MeSH
An information-theoretic approach for detecting causality and information transfer was applied to phases and amplitudes of oscillatory components related to different time scales and obtained using the wavelet transform from a time series generated by the Epileptor model. Three main time scales and their causal interactions were identified in the simulated epileptic seizures, in agreement with the interactions of the model variables. An approach consisting of wavelet transform, conditional mutual information estimation, and surrogate data testing applied to a single time series generated by the model was demonstrated to be successful in the identification of all directional (causal) interactions between the three different time scales described in the model. Thus, the methodology was prepared for the identification of causal cross-frequency phase-phase and phase-amplitude interactions in experimental and clinical neural data.
Zobrazit více v PubMed
Fisher R.S., Acevedo C., Arzimanoglou A., Bogacz A., Cross J.H., Elger C.E., Engel J., Jr., Forsgren L., French J.A., Glynn M., et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia. 2014;55:475–482. doi: 10.1111/epi.12550. PubMed DOI
Badawy R., Freestone D., Lai A., Cook M. Epilepsy: Ever-changing states of cortical excitability. Neuroscience. 2012;222:89–99. doi: 10.1016/j.neuroscience.2012.07.015. PubMed DOI
Beghi E., Carpio A., Forsgren L., Hesdorffer D.C., Malmgren K., Sander J.W., Tomson T., Hauser W.A. Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010;51:671–675. doi: 10.1111/j.1528-1167.2009.02285.x. PubMed DOI
Da Silva F.L., Blanes W., Kalitzin S.N., Parra J., Suffczynski P., Velis D.N. Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity. Epilepsia. 2003;44:72–83. doi: 10.1111/j.0013-9580.2003.12005.x. PubMed DOI
Jirsa V.K., Stacey W.C., Quilichini P.P., Ivanov A.I., Bernard C. On the nature of seizure dynamics. Brain. 2014;137:2210–2230. doi: 10.1093/brain/awu133. PubMed DOI PMC
Creaser J., Lin C., Ridler T., Brown J.T., D’Souza W., Seneviratne U., Cook M., Terry J.R., Tsaneva-Atanasova K. Domino-like transient dynamics at seizure onset in epilepsy. PLoS Comput. Biol. 2020;16:e1008206. doi: 10.1371/journal.pcbi.1008206. PubMed DOI PMC
Baier G., Goodfellow M., Taylor P., Wang Y., Garry D. The importance of modeling epileptic seizure dynamics as spatio-temporal patterns. Front. Physiol. 2012;3:281. doi: 10.3389/fphys.2012.00281. PubMed DOI PMC
Haghighi H.S., Markazi A. A new description of epileptic seizures based on dynamic analysis of a thalamocortical model. Sci. Rep. 2017;7:1–10. PubMed PMC
Pijn J.P.M., Velis D.N., van der Heyden M.J., DeGoede J., van Veelen C.W., da Silva F.H.L. Nonlinear dynamics of epileptic seizures on basis of intracranial EEG recordings. Brain Topogr. 1997;9:249–270. doi: 10.1007/BF01464480. PubMed DOI
El Houssaini K., Bernard C., Jirsa V.K. The Epileptor model: A systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus and depolarization block. eNeuro. 2020;7:ENEURO.0485-18.2019. doi: 10.1523/ENEURO.0485-18.2019. PubMed DOI PMC
Courtiol J., Guye M., Bartolomei F., Petkoski S., Jirsa V.K. Dynamical mechanisms of interictal resting-state functional connectivity in epilepsy. J. Neurosci. 2020;40:5572–5588. doi: 10.1523/JNEUROSCI.0905-19.2020. PubMed DOI PMC
Chang W.C., Kudlacek J., Hlinka J., Chvojka J., Hadrava M., Kumpost V., Powell A.D., Janca R., Maturana M.I., Karoly P.J., et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat. Neurosci. 2018;21:1742–1752. doi: 10.1038/s41593-018-0278-y. PubMed DOI PMC
Paluš M. Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett. 2014;112:078702. doi: 10.1103/PhysRevLett.112.078702. PubMed DOI
Paluš M. Cross-scale interactions and information transfer. Entropy. 2014;16:5263–5289. doi: 10.3390/e16105263. DOI
Granger C.W. Time series analysis, cointegration, and applications. Am. Econ. Rev. 2004;94:421–425. doi: 10.1257/0002828041464669. DOI
Granger C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969;37:424–438. doi: 10.2307/1912791. DOI
Paluš M., Komárek V., Hrnčíř Z., Štěrbová K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E. 2001;63:046211. doi: 10.1103/PhysRevE.63.046211. PubMed DOI
Schreiber T. Measuring information transfer. Phys. Rev. Lett. 2000;85:461–464. doi: 10.1103/PhysRevLett.85.461. PubMed DOI
Paluš M., Vejmelka M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E. 2007;75:056211. doi: 10.1103/PhysRevE.75.056211. PubMed DOI
Barnett L., Barrett A.B., Seth A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009;103:238701. doi: 10.1103/PhysRevLett.103.238701. PubMed DOI
Canolty R.T., Knight R.T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 2010;14:506–515. doi: 10.1016/j.tics.2010.09.001. PubMed DOI PMC
Aru J., Aru J., Priesemann V., Wibral M., Lana L., Pipa G., Singer W., Vicente R. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 2015;31:51–61. doi: 10.1016/j.conb.2014.08.002. PubMed DOI
Lozano-Soldevilla D., Ter Huurne N., Oostenveld R. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front. Comput. Neurosci. 2016;10:87. doi: 10.3389/fncom.2016.00087. PubMed DOI PMC
Besserve M., Schölkopf B., Logothetis N.K., Panzeri S. Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis. J. Comput. Neurosci. 2010;29:547–566. doi: 10.1007/s10827-010-0236-5. PubMed DOI PMC
Jiang H., Bahramisharif A., van Gerven M.A.J., Jensen O. Distinct directional couplings between slow and fast gamma power to the phase of theta oscillations in the rat hippocampus. Eur. J. Neurosci. 2020;51:2070–2081. doi: 10.1111/ejn.14644. PubMed DOI
Martínez-Cancino R., Delorme A., Wagner J., Kreutz-Delgado K., Sotero R.C., Makeig S. What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals? Entropy. 2020;22:1262. doi: 10.3390/e22111262. PubMed DOI PMC
Cover T., Thomas J. Elements of Information Theory. J. Wiley; New York, NY, USA: 1991.
Watanabe S. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 1960;4:66–82. doi: 10.1147/rd.41.0066. DOI
Garner W.R. Uncertainty and Structure as Psychological Concepts. Wiley; New York, NY, USA: 1962.
Fraser A.M. Information and entropy in strange attractors. IEEE Trans. Inf. Theory. 1989;35:245–262. doi: 10.1109/18.32121. DOI
Studený M., Vejnarová J. The multiinformation function as a tool for measuring stochastic dependence. In: Jordan M.I., editor. Learning in Graphical Models. Volume 89. Springer; Dordrecht, The Netherlands: 1998. pp. 261–297. NATO ASI Series (Series D: Behavioural and Social Sciences)
Stramaglia S., Cortes J.M., Marinazzo D. Synergy and redundancy in the Granger causal analysis of dynamical networks. New J. Phys. 2014;16:105003. doi: 10.1088/1367-2630/16/10/105003. DOI
Barrett A.B. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E. 2015;91:052802. doi: 10.1103/PhysRevE.91.052802. PubMed DOI
Lizier J.T., Bertschinger N., Jost J., Wibral M. Information decomposition of target effects from multi-source interactions: Perspectives on previous, current and future work. Entropy. 2018;20:307. doi: 10.3390/e20040307. PubMed DOI PMC
Paluš M. Detecting nonlinearity in multivariate time series. Phys. Lett. A. 1996;213:138–147. doi: 10.1016/0375-9601(96)00116-8. DOI
Paluš M., Albrecht V., Dvořák I. Information theoretic test for nonlinearity in time series. Phys. Lett. A. 1993;175:203–209. doi: 10.1016/0375-9601(93)90827-M. DOI
Gans F., Schumann A.Y., Kantelhardt J.W., Penzel T., Fietze I. Cross-modulated amplitudes and frequencies characterize interacting components in complex systems. Phys. Rev. Lett. 2009;102:098701. doi: 10.1103/PhysRevLett.102.098701. PubMed DOI
Heil C., Walnut D. Continuous and Discrete Wavelet Transforms. SIAM Rev. 1989;31:628–666. doi: 10.1137/1031129. DOI
Huang N.E., Wu Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008;46:RG2006. doi: 10.1029/2007RG000228. DOI
Paluš M., Novotná D. Enhanced Monte Carlo Singular System Analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlin. Process. Geophys. 2004;11:721–729. doi: 10.5194/npg-11-721-2004. DOI
Paluš M., Novotná D. Quasi-biennial oscillations extracted from the monthly NAO index and temperature records are phase-synchronized. Nonlin. Process. Geophys. 2006;13:287–296. doi: 10.5194/npg-13-287-2006. DOI
Pikovsky A., Rosenblum M., Kurths J. Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press; Cambridge, UK: 2001.
Torrence C., Compo G.P. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc. 1998;79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. DOI
Paluš M. Identifying and Quantifying Chaos by Using Information-Theoretic Functionals. In: Weigend A.S., Gershenfeld N.A., editors. Time Series Prediction: Forecasting the Future and Understanding the Past. Santa Fe Institute Studies in the Sciences of Complexity; Santa Fe, NM, USA: 1994. pp. 387–413.
Paluš M. Nonlinearity in normal human EEG: Cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol. Cybern. 1996;75:389–396. doi: 10.1007/s004220050304. PubMed DOI
Paluš M. Coarse-grained entropy rates for characterization of complex time series. Phys. D. 1996;93:64–77. doi: 10.1016/0167-2789(95)00301-0. DOI
Paluš M. Testing for nonlinearity using redundancies - quantitative and qualitative aspects. Phys. D. 1995;80:186–205. doi: 10.1016/0167-2789(95)90079-9. DOI
Hlaváčková-Schindler K., Paluš M., Vejmelka M., Bhattacharya J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 2007;441:1–46. doi: 10.1016/j.physrep.2006.12.004. DOI
Quiroga R.Q., Kraskov A., Kreuz T., Grassberger P. Performance of different synchronization measures in real data: A case study on electroencephalographic signals. Phys. Rev. E. 2002;65:041903. doi: 10.1103/PhysRevE.65.041903. PubMed DOI
Jajcay N., Kravtsov S., Sugihara G., Tsonis A.A., Paluš M. Synchronization and causality across time scales in El Niño Southern Oscillation. Npj Clim. Atmos. Sci. 2018;1:1–8. doi: 10.1038/s41612-018-0043-7. DOI
Paluš M., Krakovská A., Jakubík J., Chvosteková M. Causality, dynamical systems and the arrow of time. Chaos Interdiscip. J. Nonlinear Sci. 2018;28:075307. doi: 10.1063/1.5019944. PubMed DOI