Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations

. 2018 Dec ; 21 (12) : 1742-1752. [epub] 20181126

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30482946

Grantová podpora
G0802162 Medical Research Council - United Kingdom

Odkazy

PubMed 30482946
PubMed Central PMC7617160
DOI 10.1038/s41593-018-0278-y
PII: 10.1038/s41593-018-0278-y
Knihovny.cz E-zdroje

The mechanism of seizure emergence and the role of brief interictal epileptiform discharges (IEDs) in seizure generation are two of the most important unresolved issues in modern epilepsy research. We found that the transition to seizure is not a sudden phenomenon, but is instead a slow process that is characterized by the progressive loss of neuronal network resilience. From a dynamical perspective, the slow transition is governed by the principles of critical slowing, a robust natural phenomenon that is observable in systems characterized by transitions between dynamical regimes. In epilepsy, this process is modulated by synchronous synaptic input from IEDs. IEDs are external perturbations that produce phasic changes in the slow transition process and exert opposing effects on the dynamics of a seizure-generating network, causing either anti-seizure or pro-seizure effects. We found that the multifaceted nature of IEDs is defined by the dynamical state of the network at the moment of the discharge occurrence.

Komentář v

PubMed

Zobrazit více v PubMed

Fisher RS, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–482. PubMed

Jiruska P, et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol. 2013;591:787–797. doi: 10.1113/jphysiol.2012.239590. PubMed DOI PMC

Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. Brain. 2014;137:2210–2230. doi: 10.1093/brain/awu133. PubMed DOI PMC

Lopes da Silva F. In: Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications. Schelter B, Timmer J, Schulze-Bonhage A, editors. WILEY-VCH Verlag GmbH & Co.; 2008. Epilepsy as a Disease of the Dynamics of Neuronal Networks - Models and Predictions; pp. 97–107.

Beghi E, et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010;51:671–675. PubMed

Breakspear M, et al. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex. 2006;16:1296–1313. PubMed

Lopes da Silva FH, et al. Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity. Epilepsia. 2003;44:72–83. PubMed

de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Prog Neurobiol. 2001;63:541–567. PubMed

Avoli M, de Curtis M, Kohling R. Does interictal synchronization influence ictogenesis? Neuropharmacology. 2013;69:37–44. doi: 10.1016/j.neuropharm.2012.06.044. PubMed DOI PMC

Barbarosie M, Avoli M. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J Neurosci. 1997;17:9308–9314. doi: 10.1523/JNEUROSCI.17-23-09308.1997. PubMed DOI PMC

Karoly PJ, et al. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain. 2016;139:1066–1078. PubMed

Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol. 2011;95:104–132. doi: 10.1016/j.pneurobio.2011.07.003. PubMed DOI PMC

Huberfeld G, et al. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat Neurosci. 2011;14:627–634. PubMed

Rinaldi S, Scheffer M. Geometric analysis of ecological models with slow and fast processes. Ecosystems. 2000;3:507–521.

Scheffer M, et al. Anticipating critical transitions. Science. 2012;338:344–348. PubMed

Scheffer M, et al. Early-warning signals for critical transitions. Nature. 2009;461:53–59. PubMed

Draguhn A, Traub RD, Schmitz D, Jefferys JG. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature. 1998;394:189–192. PubMed

Jiruska P, et al. High-frequency network activity, global increase in neuronal activity, and synchrony expansion precede epileptic seizures in vitro. J Neurosci. 2010;30:5690–5701. doi: 10.1523/JNEUROSCI.0535-10.2010. PubMed DOI PMC

Lopes MA, Lee KE, Goltsev AV. Neuronal network model of interictal and recurrent ictal activity. Phys Rev E. 2017;96 PubMed

Kalitzin S, Velis D, Suffczynski P, Parra J, da Silva FL. Electrical brain-stimulation paradigm for estimating the seizure onset site and the time to ictal transition in temporal lobe epilepsy. Clin Neurophysiol. 2005;116:718–728. PubMed

Scheffer M, Carpenter SR. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol. 2003;18:648–656.

Hawkins CA, Mellanby JH. Limbic Epilepsy Induced by Tetanus Toxin - a Longitudinal Electroencephalographic Study. Epilepsia. 1987;28:431–444. PubMed

Jiruska P, et al. Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain. 2010;133:1380–1390. doi: 10.1093/brain/awq070. PubMed DOI PMC

Cook MJ, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 2013;12:563–571. PubMed

Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci. 2002;15:1499–1508. PubMed

Frohlich F, Sejnowski TJ, Bazhenov M. Network Bistability Mediates Spontaneous Transitions between Normal and Pathological Brain States. J Neurosci. 2010;30:10734–10743. doi: 10.1523/JNEUROSCI.1239-10.2010. PubMed DOI PMC

de Curtis M, Avoli M. Initiation, Propagation, and Termination of Partial (Focal) Seizures. Cold Spring Harb Perspect Med. 2015;5 doi: 10.1101/cshperspect.a022368. a022368. PubMed DOI PMC

Suffczynski P, et al. Dynamics of epileptic phenomena determined from statistics of ictal transitions. Ieee T Bio-Med Eng. 2006;53:524–532. PubMed

Scheffer M. Critical transitions in nature and society. Princeton University Press; Princeton: 2009.

Kramer MA, et al. Human seizures self-terminate across spatial scales via a critical transition. Proc Natl Acad Sci USA. 2012;109:21116–21121. doi: 10.1073/pnas.1210047110. PubMed DOI PMC

van de Leemput IA, et al. Critical slowing down as early warning for the onset and termination of depression. Proc Natl Acad Sci USA. 2014;111:87–92. doi: 10.1073/pnas.1312114110. PubMed DOI PMC

Jiruska P, Mormann F, Jefferys JGR. Neuronal and Network Dynamics Preceding Experimental Seizures. Recent Advances in Predicting and Preventing Epileptic Seizures. 2013:16–29.

Blauwblomme T, Jiruska P, Huberfeld G. Mechanisms of ictogenesis. Int Rev Neurobiol. 2014;114:155–185. PubMed

Jensen MS, Yaari Y. The relationship between interictal and ictal paroxysms in an in vitro model of focal hippocampal epilepsy. Ann Neurol. 1988;24:591–598. PubMed

Gotman J, Marciani MG. Electroencephalographic spiking activity, drug levels, and seizure occurrence in epileptic patients. Ann Neurol. 1985;17:597–603. PubMed

Avoli M, et al. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy. J Neurophysiol. 2016;115:3229–3237. doi: 10.1152/jn.01128.2015. PubMed DOI PMC

de Curtis M, Librizzi L, Biella G. Discharge threshold is enhanced for several seconds after a single interictal spike in a model of focal epileptogenesis. Eur J Neurosci. 2001;14:174–178. PubMed

Muldoon SF, et al. GABAergic inhibition shapes interictal dynamics in awake epileptic mice. Brain. 2015;138:2875–2890. PubMed

Avoli M, et al. Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro. J Neurosci. 1996;16:3912–3924. doi: 10.1523/JNEUROSCI.16-12-03912.1996. PubMed DOI PMC

Bikson M, Fox JE, Jefferys JG. Neuronal aggregate formation underlies spatiotemporal dynamics of nonsynaptic seizure initiation. J Neurophysiol. 2003;89:2330–2333. PubMed

Suffczynski P, Kalitzin S, Da Silva FHL. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 2004;126:467–484. PubMed

Benjamin O, et al. A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy. J Math Neurosci. 2012;2:1. doi: 10.1186/2190-8567-2-1. PubMed DOI PMC

Naze S, Bernard C, Jirsa V. Computational Modeling of Seizure Dynamics Using Coupled Neuronal Networks: Factors Shaping Epileptiform Activity. PLOS Comput Biol. 2015;11 doi: 10.1371/journal.pcbi.1004209. PubMed DOI PMC

Kim JW, Roberts JA, Robinson PA. Dynamics of epileptic seizures: Evolution, spreading, and suppression. J Theor Biol. 2009;257:527–532. PubMed

Jensen MS, Yaari Y. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol. 1997;77:1224–1233. PubMed

Traynelis SF, Dingledine R. Potassium-Induced Spontaneous Electrographic Seizures in the Rat Hippocampal Slice. J Neurophysiol. 1988;59:259–276. PubMed

Williams PA, et al. Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci. 2009;29:2103–2112. doi: 10.1523/JNEUROSCI.0980-08.2009. PubMed DOI PMC

Baud MO, et al. Multi-day rhythms modulate seizure risk in epilepsy. Nat Commu. 2018;9 doi: 10.1038/s41467-017-02577-y. PubMed DOI PMC

Saggio ML, Spiegler A, Bernard C, Jirsa VK. Fast-Slow Bursters in the Unfolding of a High Codimension Singularity and the Ultra-slow Transitions of Classes. J Math Neurosci. 2017;7 doi: 10.1186/s13408-017-0050-8. PubMed DOI PMC

Cook MJ, et al. Human focal seizures are characterized by populations of fixed duration and interval. Epilepsia. 2016;57:359–368. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Amplitude entropy captures chimera resembling behavior in the altered brain dynamics during seizures

. 2025 Apr 23 ; 15 (1) : 14212. [epub] 20250423

Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague

. 2024 Aug 30 ; 73 (S1) : S67-S82.

Magnetic resonance imaging techniques for indirect assessment of myelin content in the brain using standard T1w and T2w MRI sequences and postprocessing analysis

. 2023 Dec 29 ; 72 (S5) : S573-S585.

Computational modeling allows unsupervised classification of epileptic brain states across species

. 2023 Aug 18 ; 13 (1) : 13436. [epub] 20230818

Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy

. 2021 Dec 20 ; 11 (1) : 24250. [epub] 20211220

Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures

. 2021 Apr 25 ; 23 (5) : . [epub] 20210425

Perturbations both trigger and delay seizures due to generic properties of slow-fast relaxation oscillators

. 2021 Mar ; 17 (3) : e1008521. [epub] 20210329

Critical slowing down as a biomarker for seizure susceptibility

. 2020 May 01 ; 11 (1) : 2172. [epub] 20200501

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...