Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
G0802162
Medical Research Council - United Kingdom
PubMed
30482946
PubMed Central
PMC7617160
DOI
10.1038/s41593-018-0278-y
PII: 10.1038/s41593-018-0278-y
Knihovny.cz E-zdroje
- MeSH
- elektroencefalografie MeSH
- hipokampální oblast CA1 patofyziologie MeSH
- hipokampus patofyziologie MeSH
- lidé MeSH
- nervová síť patofyziologie MeSH
- potkani Sprague-Dawley MeSH
- potkani Wistar MeSH
- synapse fyziologie MeSH
- záchvaty patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The mechanism of seizure emergence and the role of brief interictal epileptiform discharges (IEDs) in seizure generation are two of the most important unresolved issues in modern epilepsy research. We found that the transition to seizure is not a sudden phenomenon, but is instead a slow process that is characterized by the progressive loss of neuronal network resilience. From a dynamical perspective, the slow transition is governed by the principles of critical slowing, a robust natural phenomenon that is observable in systems characterized by transitions between dynamical regimes. In epilepsy, this process is modulated by synchronous synaptic input from IEDs. IEDs are external perturbations that produce phasic changes in the slow transition process and exert opposing effects on the dynamics of a seizure-generating network, causing either anti-seizure or pro-seizure effects. We found that the multifaceted nature of IEDs is defined by the dynamical state of the network at the moment of the discharge occurrence.
Department of Biomedical Engineering The University of Melbourne Melbourne Australia
Department of Life Science School of Health Sciences Birmingham City University Birmingham UK
Department of Pharmacology University of Oxford Oxford UK
Faculty of Veterinary Medicine and Neuroscience Center University of Helsinki Helsinki Finland
Zobrazit více v PubMed
Fisher RS, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–482. PubMed
Jiruska P, et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol. 2013;591:787–797. doi: 10.1113/jphysiol.2012.239590. PubMed DOI PMC
Jirsa VK, Stacey WC, Quilichini PP, Ivanov AI, Bernard C. On the nature of seizure dynamics. Brain. 2014;137:2210–2230. doi: 10.1093/brain/awu133. PubMed DOI PMC
Lopes da Silva F. In: Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications. Schelter B, Timmer J, Schulze-Bonhage A, editors. WILEY-VCH Verlag GmbH & Co.; 2008. Epilepsy as a Disease of the Dynamics of Neuronal Networks - Models and Predictions; pp. 97–107.
Beghi E, et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010;51:671–675. PubMed
Breakspear M, et al. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex. 2006;16:1296–1313. PubMed
Lopes da Silva FH, et al. Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity. Epilepsia. 2003;44:72–83. PubMed
de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Prog Neurobiol. 2001;63:541–567. PubMed
Avoli M, de Curtis M, Kohling R. Does interictal synchronization influence ictogenesis? Neuropharmacology. 2013;69:37–44. doi: 10.1016/j.neuropharm.2012.06.044. PubMed DOI PMC
Barbarosie M, Avoli M. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J Neurosci. 1997;17:9308–9314. doi: 10.1523/JNEUROSCI.17-23-09308.1997. PubMed DOI PMC
Karoly PJ, et al. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain. 2016;139:1066–1078. PubMed
Avoli M, de Curtis M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog Neurobiol. 2011;95:104–132. doi: 10.1016/j.pneurobio.2011.07.003. PubMed DOI PMC
Huberfeld G, et al. Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy. Nat Neurosci. 2011;14:627–634. PubMed
Rinaldi S, Scheffer M. Geometric analysis of ecological models with slow and fast processes. Ecosystems. 2000;3:507–521.
Scheffer M, et al. Anticipating critical transitions. Science. 2012;338:344–348. PubMed
Scheffer M, et al. Early-warning signals for critical transitions. Nature. 2009;461:53–59. PubMed
Draguhn A, Traub RD, Schmitz D, Jefferys JG. Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature. 1998;394:189–192. PubMed
Jiruska P, et al. High-frequency network activity, global increase in neuronal activity, and synchrony expansion precede epileptic seizures in vitro. J Neurosci. 2010;30:5690–5701. doi: 10.1523/JNEUROSCI.0535-10.2010. PubMed DOI PMC
Lopes MA, Lee KE, Goltsev AV. Neuronal network model of interictal and recurrent ictal activity. Phys Rev E. 2017;96 PubMed
Kalitzin S, Velis D, Suffczynski P, Parra J, da Silva FL. Electrical brain-stimulation paradigm for estimating the seizure onset site and the time to ictal transition in temporal lobe epilepsy. Clin Neurophysiol. 2005;116:718–728. PubMed
Scheffer M, Carpenter SR. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol. 2003;18:648–656.
Hawkins CA, Mellanby JH. Limbic Epilepsy Induced by Tetanus Toxin - a Longitudinal Electroencephalographic Study. Epilepsia. 1987;28:431–444. PubMed
Jiruska P, et al. Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain. 2010;133:1380–1390. doi: 10.1093/brain/awq070. PubMed DOI PMC
Cook MJ, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 2013;12:563–571. PubMed
Wendling F, Bartolomei F, Bellanger JJ, Chauvel P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci. 2002;15:1499–1508. PubMed
Frohlich F, Sejnowski TJ, Bazhenov M. Network Bistability Mediates Spontaneous Transitions between Normal and Pathological Brain States. J Neurosci. 2010;30:10734–10743. doi: 10.1523/JNEUROSCI.1239-10.2010. PubMed DOI PMC
de Curtis M, Avoli M. Initiation, Propagation, and Termination of Partial (Focal) Seizures. Cold Spring Harb Perspect Med. 2015;5 doi: 10.1101/cshperspect.a022368. a022368. PubMed DOI PMC
Suffczynski P, et al. Dynamics of epileptic phenomena determined from statistics of ictal transitions. Ieee T Bio-Med Eng. 2006;53:524–532. PubMed
Scheffer M. Critical transitions in nature and society. Princeton University Press; Princeton: 2009.
Kramer MA, et al. Human seizures self-terminate across spatial scales via a critical transition. Proc Natl Acad Sci USA. 2012;109:21116–21121. doi: 10.1073/pnas.1210047110. PubMed DOI PMC
van de Leemput IA, et al. Critical slowing down as early warning for the onset and termination of depression. Proc Natl Acad Sci USA. 2014;111:87–92. doi: 10.1073/pnas.1312114110. PubMed DOI PMC
Jiruska P, Mormann F, Jefferys JGR. Neuronal and Network Dynamics Preceding Experimental Seizures. Recent Advances in Predicting and Preventing Epileptic Seizures. 2013:16–29.
Blauwblomme T, Jiruska P, Huberfeld G. Mechanisms of ictogenesis. Int Rev Neurobiol. 2014;114:155–185. PubMed
Jensen MS, Yaari Y. The relationship between interictal and ictal paroxysms in an in vitro model of focal hippocampal epilepsy. Ann Neurol. 1988;24:591–598. PubMed
Gotman J, Marciani MG. Electroencephalographic spiking activity, drug levels, and seizure occurrence in epileptic patients. Ann Neurol. 1985;17:597–603. PubMed
Avoli M, et al. Specific imbalance of excitatory/inhibitory signaling establishes seizure onset pattern in temporal lobe epilepsy. J Neurophysiol. 2016;115:3229–3237. doi: 10.1152/jn.01128.2015. PubMed DOI PMC
de Curtis M, Librizzi L, Biella G. Discharge threshold is enhanced for several seconds after a single interictal spike in a model of focal epileptogenesis. Eur J Neurosci. 2001;14:174–178. PubMed
Muldoon SF, et al. GABAergic inhibition shapes interictal dynamics in awake epileptic mice. Brain. 2015;138:2875–2890. PubMed
Avoli M, et al. Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro. J Neurosci. 1996;16:3912–3924. doi: 10.1523/JNEUROSCI.16-12-03912.1996. PubMed DOI PMC
Bikson M, Fox JE, Jefferys JG. Neuronal aggregate formation underlies spatiotemporal dynamics of nonsynaptic seizure initiation. J Neurophysiol. 2003;89:2330–2333. PubMed
Suffczynski P, Kalitzin S, Da Silva FHL. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 2004;126:467–484. PubMed
Benjamin O, et al. A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy. J Math Neurosci. 2012;2:1. doi: 10.1186/2190-8567-2-1. PubMed DOI PMC
Naze S, Bernard C, Jirsa V. Computational Modeling of Seizure Dynamics Using Coupled Neuronal Networks: Factors Shaping Epileptiform Activity. PLOS Comput Biol. 2015;11 doi: 10.1371/journal.pcbi.1004209. PubMed DOI PMC
Kim JW, Roberts JA, Robinson PA. Dynamics of epileptic seizures: Evolution, spreading, and suppression. J Theor Biol. 2009;257:527–532. PubMed
Jensen MS, Yaari Y. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol. 1997;77:1224–1233. PubMed
Traynelis SF, Dingledine R. Potassium-Induced Spontaneous Electrographic Seizures in the Rat Hippocampal Slice. J Neurophysiol. 1988;59:259–276. PubMed
Williams PA, et al. Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J Neurosci. 2009;29:2103–2112. doi: 10.1523/JNEUROSCI.0980-08.2009. PubMed DOI PMC
Baud MO, et al. Multi-day rhythms modulate seizure risk in epilepsy. Nat Commu. 2018;9 doi: 10.1038/s41467-017-02577-y. PubMed DOI PMC
Saggio ML, Spiegler A, Bernard C, Jirsa VK. Fast-Slow Bursters in the Unfolding of a High Codimension Singularity and the Ultra-slow Transitions of Classes. J Math Neurosci. 2017;7 doi: 10.1186/s13408-017-0050-8. PubMed DOI PMC
Cook MJ, et al. Human focal seizures are characterized by populations of fixed duration and interval. Epilepsia. 2016;57:359–368. PubMed
Amplitude entropy captures chimera resembling behavior in the altered brain dynamics during seizures
Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague
Computational modeling allows unsupervised classification of epileptic brain states across species
Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy
Cross-Scale Causality and Information Transfer in Simulated Epileptic Seizures
Critical slowing down as a biomarker for seizure susceptibility