Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy

. 2021 Dec 20 ; 11 (1) : 24250. [epub] 20211220

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34930926

Grantová podpora
UH2 NS095495 NINDS NIH HHS - United States
U24 NS113637 NINDS NIH HHS - United States
R01 NS092882 NINDS NIH HHS - United States
UH3 NS095495 NINDS NIH HHS - United States
U01 NS073557 NINDS NIH HHS - United States

Odkazy

PubMed 34930926
PubMed Central PMC8688461
DOI 10.1038/s41598-021-03555-7
PII: 10.1038/s41598-021-03555-7
Knihovny.cz E-zdroje

Chronic brain recordings suggest that seizure risk is not uniform, but rather varies systematically relative to daily (circadian) and multiday (multidien) cycles. Here, one human and seven dogs with naturally occurring epilepsy had continuous intracranial EEG (median 298 days) using novel implantable sensing and stimulation devices. Two pet dogs and the human subject received concurrent thalamic deep brain stimulation (DBS) over multiple months. All subjects had circadian and multiday cycles in the rate of interictal epileptiform spikes (IES). There was seizure phase locking to circadian and multiday IES cycles in five and seven out of eight subjects, respectively. Thalamic DBS modified circadian (all 3 subjects) and multiday (analysis limited to the human participant) IES cycles. DBS modified seizure clustering and circadian phase locking in the human subject. Multiscale cycles in brain excitability and seizure risk are features of human and canine epilepsy and are modifiable by thalamic DBS.

Zobrazit více v PubMed

Gowers WR. Epilepsy and Other Chronic Convulsive Diseases: Their Causes, Symptoms, and Treatment. Churchill; 1901.

Griffiths G, Fox JT. Rhythm in epilepsy. Lancet. 1938;232(5999):409–416.

Langdon-Down M, Russell W. Brain, time of day in relation to convulsions in epilepsy. Lancet. 1929;213(5516):1029–1032.

Baud MO, et al. Multi-day rhythms modulate seizure risk in epilepsy. Nat. Commun. 2018;9(1):88. PubMed PMC

Karoly PJ, et al. Interictal spikes and epileptic seizures: Their relationship and underlying rhythmicity. Brain. 2016;139(Pt 4):1066–1078. PubMed

Karoly PJ, et al. Circadian and circaseptan rhythms in human epilepsy: A retrospective cohort study. Lancet Neurol. 2018;17(11):977–985. PubMed

Gregg NM, et al. Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy. Brain Commun. 2020;2(1):fcaa008. PubMed PMC

Baud MO, et al. Endogenous multidien rhythm of epilepsy in rats. Exp. Neurol. 2019;315:82–87. PubMed

Debski KJ, et al. The circadian dynamics of the hippocampal transcriptome and proteome is altered in experimental temporal lobe epilepsy. Sci. Adv. 2020;6:41. PubMed PMC

Leguia MG, et al. Seizure cycles in focal epilepsy. JAMA Neurol. 2021;78(4):454–463. PubMed PMC

Karoly PJ, et al. Cycles in epilepsy. Nature reviews. Neurology. 2021;20:21. PubMed

Khan S, et al. Circadian rhythm and epilepsy. Lancet Neurol. 2018;17(12):1098–1108. PubMed

Chang WC, et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat. Neurosci. 2018;21(12):1742–1752. PubMed

Jensen MS, Yaari Y. The relationship between interictal and ictal paroxysms in an in vitro model of focal hippocampal epilepsy. Ann. Neurol. 1988;24(5):591–598. PubMed

Ly JQM, et al. Circadian regulation of human cortical excitability. Nat. Commun. 2016;7:11828. PubMed PMC

Maturana MI, et al. Critical slowing down as a biomarker for seizure susceptibility. Nat. Commun. 2020;11(1):2172. PubMed PMC

Meisel C, et al. Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle. Proc. Natl. Acad. Sci. USA. 2015;112(47):14694–14699. PubMed PMC

Pigorini A, et al. Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep. Neuroimage. 2015;112:105–113. PubMed

Smith MJ, et al. Menstrual cycle effects on cortical excitability. Neurology. 1999;53(9):2069–2072. PubMed

Usami K, et al. The neural tides of sleep and consciousness revealed by single-pulse electrical brain stimulation. Sleep. 2019;42:6. PubMed PMC

Wright MA, et al. Cortical excitability predicts seizures in acutely drug-reduced temporal lobe epilepsy patients. Neurology. 2006;67(9):1646–1651. PubMed

Bunford N, et al. Canis familiaris as a model for non-invasive comparative neuroscience. Trends Neurosci. 2017;40(7):438–452. PubMed

Hare B, et al. The domestication of social cognition in dogs. Science. 2002;298(5598):1634–1636. PubMed

Tang R, et al. Candidate genes and functional noncoding variants identified in a canine model of obsessive-compulsive disorder. Genome Biol. 2014;15(3):R25. PubMed PMC

Heske L, et al. A cohort study of epilepsy among 665,000 insured dogs: Incidence, mortality and survival after diagnosis. Vet. J. 2014;202(3):471–476. PubMed

Berendt M, et al. Electroencephalography in dogs with epilepsy: Similarities between human and canine findings. Acta Neurol. Scand. 1999;99(5):276–283. PubMed

Fisher R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908. PubMed

Paz JT, et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 2013;16(1):64–70. PubMed PMC

Guye M, et al. The role of corticothalamic coupling in human temporal lobe epilepsy. Brain. 2006;129(Pt 7):1917–1928. PubMed

Gregg NM, et al. Anterior nucleus of the thalamus seizure detection in ambulatory humans. Epilepsia. 2021;62(10):e158–e164. PubMed PMC

Yu T, et al. High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain. 2018;141(9):2631–2643. PubMed

Chen R, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48(5):1398–1403. PubMed

Lundstrom BN, et al. Chronic subthreshold cortical stimulation and stimulation-related EEG biomarkers for focal epilepsy. Brain Commun. 2019;1(1):10. PubMed PMC

Kile KB, Tian N, Durand DM. Low frequency stimulation decreases seizure activity in a mutation model of epilepsy. Epilepsia. 2010;51(9):1745–1753. PubMed PMC

Koubeissi MZ, et al. Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann. Neurol. 2013;74(2):223–231. PubMed

Cook MJ, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: A first-in-man study. Lancet Neurol. 2013;12(6):563–571. PubMed

Kremen V, et al. Integrating brain implants with local and distributed computing devices: A next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 2018;6:2500112. PubMed PMC

Pavlova MK, et al. Is there a circadian variation of epileptiform abnormalities in idiopathic generalized epilepsy? Epilepsy Behav. 2009;16(3):461–467. PubMed PMC

Quigg M, et al. Effects of circadian regulation and rest-activity state on spontaneous seizures in a rat model of limbic epilepsy. Epilepsia. 2000;41(5):502–509. PubMed

Dell KL, et al. Seizure likelihood varies with day-to-day variations in sleep duration in patients with refractory focal epilepsy: A longitudinal electroencephalography investigation. EClinicalMedicine. 2021;20:100934. PubMed PMC

Bódizs R, et al. Sleep in the dog: Comparative, behavioral and translational relevance. Curr. Opin. Behav. Sci. 2020;33:25–33.

Aschoff J. Circadian rhythms in man. Science. 1965;148(3676):1427–1432. PubMed

Leguia MG, et al. Measuring synchrony in bio-medical timeseries. Chaos. 2021;31(1):013138. PubMed

Proix T, et al. Forecasting seizure risk in adults with focal epilepsy: A development and validation study. Lancet Neurol. 2021;20(2):127–135. PubMed PMC

Rao VR, et al. Cues for seizure timing. Epilepsia. 2021;62(Suppl 1):S15–S31. PubMed

Voges BR, et al. Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia. 2015;56(8):e99–e103. PubMed

Baud MO, Rao VR. Gauging seizure risk. Neurology. 2018;91(21):967–973. PubMed

Caciagli L, et al. Thalamus and focal to bilateral seizures: A multiscale cognitive imaging study. Neurology. 2020;95(17):e2427–e2441. PubMed PMC

Dinkelacker V, et al. Hippocampal-thalamic wiring in medial temporal lobe epilepsy: Enhanced connectivity per hippocampal voxel. Epilepsia. 2015;56(8):1217–1226. PubMed

He X, et al. Presurgical thalamic "hubness" predicts surgical outcome in temporal lobe epilepsy. Neurology. 2017;88(24):2285–2293. PubMed

Mueller SG, et al. Involvement of the thalamocortical network in TLE with and without mesiotemporal sclerosis. Epilepsia. 2010;51(8):1436–1445. PubMed PMC

O'Muircheartaigh J, et al. Abnormal thalamocortical structural and functional connectivity in juvenile myoclonic epilepsy. Brain. 2012;135(Pt 12):3635–3644. PubMed PMC

Lozano AM, et al. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol. 2019;15(3):148–160. PubMed PMC

Ashkan K, et al. Insights into the mechanisms of deep brain stimulation. Nat. Rev. Neurol. 2017;13(9):548–554. PubMed

Dostrovsky JO, Lozano AM. Mechanisms of deep brain stimulation. Mov. Disord. 2002;17(Suppl 3):S63–S68. PubMed

Mirski MA, Fisher RS. Electrical stimulation of the mammillary nuclei increases seizure threshold to pentylenetetrazol in rats. Epilepsia. 1994;35(6):1309–1316. PubMed

Stypulkowski PH, Stanslaski SR, Giftakis JE. Modulation of hippocampal activity with fornix deep brain stimulation. Brain Stimul. 2017;10(6):1125–1132. PubMed

Mihaly I, et al. Amygdala low-frequency stimulation reduces pathological phase–amplitude coupling in the pilocarpine model of epilepsy. Brain Sci. 2020;10:11. PubMed PMC

Miller JW, Turner GM, Gray BC. Anticonvulsant effects of the experimental induction of hippocampal theta activity. Epilepsy Res. 1994;18(3):195–204. PubMed

Silva AB, et al. Effects of anterior thalamic nuclei stimulation on hippocampal activity: Chronic recording in a patient with drug-resistant focal epilepsy. Epilepsy Behav. Rep. 2021;16:100467. PubMed PMC

Frye RE, et al. Transcranial magnetic stimulation in child neurology: Current and future directions. J. Child Neurol. 2008;23(1):79–96. PubMed PMC

Janca R, et al. Detection of interictal epileptiform discharges using signal envelope distribution modelling: Application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 2015;28(1):172–183. PubMed

Baldassano SN, et al. Crowdsourcing seizure detection: Algorithm development and validation on human implanted device recordings. Brain. 2017;140(6):1680–1691. PubMed PMC

MathWorks(R). cwt Continuous 1-D wavelet transform. 2021. https://www.mathworks.com/help/wavelet/ref/cwt.html?searchHighlight=cwt&s_tid=srchtitle_cwt_1.

Berens, P., CircStat: A MATLAB Toolbox for Circular Statistics. 2009. 31(10): 21.

Cremers J, Klugkist I. One direction? A tutorial for circular data analysis using R with examples in cognitive psychology. Front. Psychol. 2018;9:2040. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...