Embedding digital chronotherapy into bioelectronic medicines
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MC_UU_00003/3
Medical Research Council - United Kingdom
PubMed
35313697
PubMed Central
PMC8933700
DOI
10.1016/j.isci.2022.104028
PII: S2589-0042(22)00298-X
Knihovny.cz E-zdroje
- Klíčová slova
- Bioelectronics, Biological sciences, Biotechnology, Neuroscience,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biological rhythms pervade physiology and pathophysiology across multiple timescales. Because of the limited sensing and algorithm capabilities of neuromodulation device technology to-date, insight into the influence of these rhythms on the efficacy of bioelectronic medicine has been infeasible. As the development of new devices begins to mitigate previous technology limitations, we propose that future devices should integrate chronobiological considerations in their control structures to maximize the benefits of neuromodulation therapy. We motivate this proposition with preliminary longitudinal data recorded from patients with Parkinson's disease and epilepsy during deep brain stimulation therapy, where periodic symptom biomarkers are synchronized to sub-daily, daily, and longer timescale rhythms. We suggest a physiological control structure for future bioelectronic devices that incorporates time-based adaptation of stimulation control, locked to patient-specific biological rhythms, as an adjunct to classical control methods and illustrate the concept with initial results from three of our recent case studies using chronotherapy-enabled prototypes.
Department of Neurological Surgery University of California San Francisco San Francisco CA 94143 USA
Department of Neurology University of California San Francisco San Francisco CA 94143 USA
Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN 55905 USA
Institute of Biomedical Engineering Department of Engineering Science University of Oxford Oxford UK
Surry Sleep Research Centre University of Surrey University of Surrey Guildford UK
Zobrazit více v PubMed
Amara A.W., Standaert D.G., Guthrie S., Cutter G., Watts R.L., Walker H.C. Unilateral subthalamic nucleus deep brain stimulation improves sleep quality in Parkinson’s disease. Park. Relat. Disord. 2012;18:63–68. doi: 10.1016/J.PARKRELDIS.2011.09.001. PubMed DOI PMC
Armstrong M.J., Okun M.S. Choosing a Parkinson disease treatment. JAMA. 2020;323:1420. doi: 10.1001/JAMA.2020.1224. PubMed DOI
Attia T.P., Crepeau D., Kremen V., Nasseri M., Guragain H., Steele S.W., Sladky V., Nejedly P., Mivalt F., Herron J.A., et al. Epilepsy personal assistant device—a mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulation. Front. Neurol. 2021;12:704170. doi: 10.3389/FNEUR.2021.704170. PubMed DOI PMC
Baud M.O., Kleen J.K., Mirro E.A., Andrechak J.C., King-Stephens D., Chang E.F., Rao V.R. Multi-day rhythms modulate seizure risk in epilepsy. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-017-02577-y. PubMed DOI PMC
Baumgartner A.J., Kushida C.A., Summers M.O., Kern D.S., Abosch A., Thompson J.A. Basal ganglia local field potentials as a potential biomarker for sleep disturbance in Parkinson’s disease. Front. Neurol. 2021;12:1957. doi: 10.3389/FNEUR.2021.765203/BIBTEX. PubMed DOI PMC
Bergey G.K., Morrell M.J., Mizrahi E.M., Goldman A., King-Stephens D., Nair D., Srinivasan S., Jobst B., Gross R.E., Shields D.C., et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015;84:810–817. doi: 10.1212/WNL.0000000000001280. PubMed DOI PMC
Blachut B., Hoppe C., Surges R., Elger C., Helmstaedter C. Subjective seizure counts by epilepsy clinical drug trial participants are not reliable. Epilepsy Behav. 2017;67:122–127. doi: 10.1016/J.YEBEH.2016.10.036. PubMed DOI
Blachut B., Hoppe C., Surges R., Stahl J., Elger C.E., Helmstaedter C. Counting seizures: the primary outcome measure in epileptology from the patients’ perspective. Seizure. 2015;29:97–103. doi: 10.1016/J.SEIZURE.2015.03.004. PubMed DOI
Burish M.J., Chen Z., Yoo S.-H. Emerging relevance of circadian rhythms in headaches and neuropathic pain. Acta Physiol. 2019;225:e13161. doi: 10.1111/APHA.13161. PubMed DOI PMC
Cardinali D.P., Pandi-Perumal S.R. Clinical pharmacology of sleep. 2006. Chronopharmacology and its implications to the pharmacology of sleep; pp. 197–2006. DOI
Cederroth C.R., Albrecht U., Bass J., Brown S.A., Dyhrfjeld-Johnsen J., Gachon F., Green C.B., Hastings M.H., Helfrich-Förster C., Hogenesch J.B., et al. Medicine in the fourth dimension. Cell Metab. 2019;30:238–250. doi: 10.1016/J.CMET.2019.06.019. PubMed DOI PMC
Crago P., Lan N., Veltink P., Abbas J., Kantor C. New control strategies for neuroprosthetic systems. J. Rehabil. Res. Dev. 1996;33:158–172. PubMed
Duffy J., Wright K., Jr. Entrainment of the human circadian system by light. J. Biol. Rhythm. 2005;20:326–338. doi: 10.1177/0748730405277983. PubMed DOI
den Dulk K., Bouwels L., Lindemans F., Rankin I., Brugada P., Wellens H.J.J. The activitrax rate responsive pacemaker system. Am. J. Cardiol. 1988;61:107–112. doi: 10.1016/0002-9149(88)91314-8. PubMed DOI
Fisher R., Salanova V., Witt T., Worth R., Henry T., Gross R., Oommen K., Osorio I., Nazzaro J., Labar D., et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908. doi: 10.1111/J.1528-1167.2010.02536.X. PubMed DOI
Geller E.B., Skarpaas T.L., Gross R.E., Goodman R.R., Barkley G.L., Bazil C.W., Berg M.J., Bergey G.K., Cash S.S., Cole A.J., et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia. 2017;58:994–1004. doi: 10.1111/EPI.13740. PubMed DOI
Germain A., Kupfer D.J. Circadian rhythm disturbances in depression. Hum. Psychopharmacol. Clin. Exp. 2008;23:571–585. doi: 10.1002/HUP.964. PubMed DOI PMC
Gilron R., Little S., Wilt R., Perrone R., Anso J., Starr P.A. Sleep-aware adaptive deep brain stimulation control: chronic use at home with dual independent linear discriminate detectors. Front. Neurosci. 2021;0:1307. doi: 10.3389/FNINS.2021.732499. PubMed DOI PMC
Gondhalekar R., Dassau E., Zisser H.C., Doyle F.J. Periodic-zone model predictive control for diurnal closed-loop operation of an artificial pancreas. J. Diabetes Sci. Technol. 2013;7:1446–1460. doi: 10.1177/193229681300700605. PubMed DOI PMC
Grado L.L., Johnson M.D., Netoff T.I. Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease. PLoS Comput. Biol. 2018;14:1–23. doi: 10.1371/journal.pcbi.1006606. PubMed DOI PMC
Gregg N.M., Nasseri M., Kremen V., Patterson E.E., Sturges B.K., Denison T.J., Brinkmann B.H., Worrell G.A. Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy. Brain Commun. 2020;2:fcaa008. doi: 10.1093/BRAINCOMMS/FCAA008. PubMed DOI PMC
Gregg N.M., Sladky V., Nejedly P., Mivalt F., Kim I., Balzekas I., Sturges B.K., Crowe C., Patterson E.E., van Gompel J.J., et al. Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy. Sci. Rep. 2021;11:1–12. doi: 10.1038/s41598-021-03555-7. PubMed DOI PMC
Hastings M.H., Maywood E.S., Brancaccio M. The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology. 2019;8:13. doi: 10.3390/BIOLOGY8010013. PubMed DOI PMC
Hjort N., Østergaard K., Dupont E. Improvement of sleep quality in patients with advanced Parkinson’s disease treated with deep brain stimulation of the subthalamic nucleus. Mov. Disord. 2004;19:196–199. doi: 10.1002/MDS.10639. PubMed DOI
Hoppe C., Poepel A., Elger C.E. Epilepsy: accuracy of patient seizure counts. Arch. Neurol. 2007;64:1595–1599. doi: 10.1001/ARCHNEUR.64.11.1595. PubMed DOI
Houk J.C. Control strategies in physiological systems. FASEB J. 1988;2:97–107. doi: 10.1096/FASEBJ.2.2.3277888. PubMed DOI
Jehi L., Friedman D., Carlson C., Cascino G., Dewar S., Elger C., Engel J., Knowlton R., Kuzniecky R., McIntosh A., et al. The evolution of epilepsy surgery between 1991 and 2011 in nine major epilepsy centers across the United States, Germany, and Australia. Epilepsia. 2015;56:1526–1533. doi: 10.1111/EPI.13116. PubMed DOI PMC
Karoly P.J., Goldenholz D.M., Freestone D.R., Moss R.E., Grayden D.B., Theodore W.H., Cook M.J. Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study. Lancet Neurol. 2018;17:977–985. doi: 10.1016/S1474-4422(18)30274-6. PubMed DOI
Karoly P.J., Rao V.R., Gregg N.M., Worrell G.A., Bernard C., Cook M.J., Baud M.O. Cycles in epilepsy. Nat. Rev. Neurol. 2021;17:267–284. doi: 10.1038/s41582-021-00464-1. PubMed DOI
Khan S., Nobili L., Khatami R., Loddenkemper T., Cajochen C., Dijk D.J., Eriksson S.H. Circadian rhythm and epilepsy. Lancet Neurol. 2018;17:1098–1108. doi: 10.1016/S1474-4422(18)30335-1. PubMed DOI
Khodaei M.J., Candelino N., Mehrvarz A., Jalili N. Physiological closed-loop control (PCLC) systems: review of a modern frontier in automation. IEEE Access. 2020;8:23965–24005. doi: 10.1109/ACCESS.2020.2968440. DOI
Kim P., Oster H., Lehnert H., Schmid S.M., Salamat N., Barclay J.L., Maronde E., Inder W., Rawashdeh O. Coupling the circadian clock to homeostasis: the role of period in timing physiology. Endocr. Rev. 2019;40:66–95. doi: 10.1210/ER.2018-00049. PubMed DOI
Kitaoka K., Miura H., Kitamura M., Akutagawa M., Kinouchi Y., Yoshizaki K. Feed-forward changes in carotid blood flow velocity during active standing. Neurosci. Lett. 2011;487:240–245. doi: 10.1016/J.NEULET.2010.10.030. PubMed DOI
Kremen V., Brinkmann B.H., Kim I., Guragain H., Nasseri M., Magee A.L., Pal Attia T., Nejedly P., Sladky V., Nelson N., et al. Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 2018;6:2500112. doi: 10.1109/JTEHM.2018.2869398. PubMed DOI PMC
Landolt H., Moser S., Wieser H., Borbély A., Dijk D. Intracranial temperature across 24-hour sleep-wake cycles in humans. Neuroreport. 1995;6:913–917. doi: 10.1097/00001756-199504190-00022. PubMed DOI
Leng Y., Musiek E.S., Hu K., Cappuccio F.P., Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019;18:307–318. doi: 10.1016/S1474-4422(18)30461-7. PubMed DOI PMC
Little S., Beudel M., Zrinzo L., Foltynie T., Limousin P., Hariz M., Neal S., Cheeran B., Cagnan H., Gratwicke J., et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 2016;87:717–721. doi: 10.1136/jnnp-2015-310972. PubMed DOI PMC
Lloyd M., Reynolds D., Sheldon T., Stromberg K., Hudnall J.H., Demmer W.M., Omar R., Ritter P., Hummel J., Mont L., et al. Rate adaptive pacing in an intracardiac pacemaker. Heart Rhythm. 2017;14:200–205. doi: 10.1016/J.HRTHM.2016.11.016. PubMed DOI
Logan R.W., McClung C.A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 2018;20:49–65. doi: 10.1038/s41583-018-0088-y. PubMed DOI PMC
Lu M., Wei X., Che Y., Wang J., Loparo K.A. Application of reinforcement learning to deep brain stimulation in a computational model of Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2020;28:339–349. doi: 10.1109/TNSRE.2019.2952637. PubMed DOI
Ly J.Q.M., Gaggioni G., Chellappa S.L., Papachilleos S., Brzozowski A., Borsu C., Rosanova M., Sarasso S., Middleton B., Luxen A., et al. Circadian regulation of human cortical excitability. Nat. Commun. 2016;7:1–10. doi: 10.1038/ncomms11828. PubMed DOI PMC
Mantovani S., Smith S.S., Gordon R., O’Sullivan J.D. An overview of sleep and circadian dysfunction in Parkinson’s disease. J. Sleep Res. 2018;27:e12673. doi: 10.1111/JSR.12673. PubMed DOI
Matsukawa K., Liang N., Ishii K. Central command: feedforward control of the sympathoadrenal system during exercise. J. Phys. Fit. Sports Med. 2012;1:573–577. doi: 10.7600/JPFSM.1.573. DOI
Merello M., Hughes A., Colosimo C., Hoffman M., Starkstein S., Leiguarda R. Sleep benefit in Parkinson’s disease. Mov. Disord. 1997;12:506–508. doi: 10.1002/MDS.870120405. PubMed DOI
Mivalt F., Kremen V., Sladky V., Balzekas I., Nejedly P., Gregg N., Lundstrom B., Lepkova K., Pridalova T., Brinkmann B.H., et al. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. medRxiv. 2021 doi: 10.1101/2021.08.10.21261645. Preprint at. PubMed DOI PMC
Mizrahi-Kliger A.D., Kaplan A., Israel Z., Deffains M., Bergman H. Basal ganglia beta oscillations during sleep underlie Parkinsonian insomnia. Proc. Natl. Acad. Sci. U S A. 2020;117:17359–17368. doi: 10.1073/pnas.2001560117. PubMed DOI PMC
Monteleone P., Martiadis V., Maj M. Circadian rhythms and treatment implications in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2011;35:1569–1574. doi: 10.1016/J.PNPBP.2010.07.028. PubMed DOI
Moore J.L., Carvalho D.Z., St Louis E.K., Bazil C. Sleep and epilepsy: a focused review of pathophysiology, clinical syndromes, Co-morbidities, and therapy. Neurotherapeutics. 2021;18:170–180. doi: 10.1007/S13311-021-01021-W. PubMed DOI PMC
Morrell M.J. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77:1295–1304. doi: 10.1212/WNL.0B013E3182302056. PubMed DOI
Muto V., Jaspar M., Meyer C., Kussé C., Chellappa S.L., Degueldre C., Balteau E., Bourdiec A.S.-L., Luxen A., Middleton B., et al. Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science. 2016;353:687–690. doi: 10.1126/SCIENCE.AAD2993. PubMed DOI
Naber W.C., Fronczek R., Haan J., Doesborg P., Colwell C.S., Ferrari M.D., Meijer J.H. The biological clock in cluster headache: a review and hypothesis. Cephalalgia. 2019;39:1855–1866. doi: 10.1177/0333102419851815. PubMed DOI
Nair D.R., Laxer K.D., Weber P.B., Murro A.M., Park Y.D., Barkley G.L., Smith B.J., Gwinn R.P., Doherty M.J., Noe K.H., et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology. 2020;95:e1244–e1256. doi: 10.1212/WNL.0000000000010154. PubMed DOI PMC
Parhizgar F., Nugent K., Raj R. Obstructive sleep apnea and respiratory complications associated with vagus nerve stimulators. J. Clin. Sleep Med. 2011;7:401–407. doi: 10.5664/JCSM.1204. PubMed DOI PMC
Power M.L., Schulkin J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite. 2008;50:194–206. doi: 10.1016/J.APPET.2007.10.006. PubMed DOI PMC
Roenneberg T. What is chronotype? Sleep Biol. Rhythm. 2012;10:75–76.
Ruben M.D., Smith D.F., FitzGerald G.A., Hogenesch J.B. Dosing time matters. Science. 2019;365:547–549. doi: 10.1126/SCIENCE.AAX7621. PubMed DOI PMC
Ruoff L., Jarosiewicz B., Zak R., Tcheng T.K., Neylan T.C., Rao V.R. Sleep disruption is not observed with brain-responsive neurostimulation for epilepsy. Epilepsia Open. 2020;5:155–165. doi: 10.1002/EPI4.12382. PubMed DOI PMC
Rusak B., Meijer J.H., Harrington M.E. Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract. Brain Res. 1989;493:283–291. doi: 10.1016/0006-8993(89)91163-3. PubMed DOI
Salanova V., Sperling M.R., Gross R.E., Irwin C.P., Vollhaber J.A., Giftakis J.E., Fisher R.S. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62:1306–1317. doi: 10.1111/EPI.16895. PubMed DOI
Salanova V., Witt T., Worth R., Henry T.R., Gross R.E., Nazzaro J.M., Labar D., Sperling M.R., Sharan A., Sandok E., et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015;84:1017–1025. doi: 10.1212/WNL.0000000000001334. PubMed DOI PMC
Schal C., Bossert H.W., Theor Biol J., Barad M.L., Haugen D.A. Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science. 1982;215:1407–1409. doi: 10.1126/SCIENCE.7063851. PubMed DOI
Schrag A., Quinn N. Dyskinesias and motor fluctuations in Parkinson’s diseaseA community-based study. Brain. 2000;123:2297–2305. doi: 10.1093/BRAIN/123.11.2297. PubMed DOI
Sharma V.D., Sengupta S., Chitnis S., Amara A.W. Deep brain stimulation and sleep-wake disturbances in Parkinson disease: a review. Front. Neurol. 2018;0:697. doi: 10.3389/FNEUR.2018.00697. PubMed DOI PMC
Sladky V., Nejedly P., Mivalt F., Brinkmann B.H., Kim I., Louis E.K. st., Gregg N.M., Lundstrom B.N., Crowe C.M., Attia T.P., et al. Distributed brain Co-processor for neurophysiologic tracking and adaptive stimulation: application to drug resistant epilepsy. bioRxiv. 2021 doi: 10.1101/2021.03.08.434476. Preprint at. DOI
Smolensky M.H., Hermida R.C., Geng Y.J. Chronotherapy of cardiac and vascular disease: timing medications to circadian rhythms to optimize treatment effects and outcomes. Curr. Opin. Pharmacol. 2021;57:41–48. doi: 10.1016/J.COPH.2020.10.014. PubMed DOI
Smolensky M.H., Peppas N.A. Chronobiology, drug delivery, and chronotherapeutics. Adv. Drug Deliv. Rev. 2007;59:828–851. doi: 10.1016/J.ADDR.2007.07.001. PubMed DOI
Smolensky M.H., Portaluppi F., Manfredini R., Hermida R.C., Tiseo R., Sackett-Lundeen L.L., Haus E.L. Diurnal and twenty-four hour patterning of human diseases: acute and chronic common and uncommon medical conditions. Sleep Med. Rev. 2015;21:12–22. doi: 10.1016/J.SMRV.2014.06.005. PubMed DOI
Stanslaski S., Herron J., Chouinard T., Bourget D., Isaacson B., Kremen V., Opri E., Drew W., Brinkmann B.H., Gunduz A., et al. A chronically implantable neural coprocessor for investigating the treatment of neurological disorders. IEEE Trans. Biomed. Circuits Syst. 2018;12:1230–1245. doi: 10.1109/TBCAS.2018.2880148. PubMed DOI PMC
Steele T.A., St Louis E.K., Videnovic A., Auger R.R. Circadian rhythm sleep–wake disorders: a contemporary review of neurobiology, treatment, and dysregulation in neurodegenerative disease. Neurotherapeutics. 2021;18:53–74. doi: 10.1007/S13311-021-01031-8. PubMed DOI PMC
Sun F., Morrell M. The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev. Med. devices. 2014;11:563–572. doi: 10.1586/17434440.2014.947274. PubMed DOI
Tan C.O., Taylor J.A. Feedback and feedforward sympathetic haemodynamic control: chicken or egg? J. Physiol. 2011;589:1867. doi: 10.1113/JPHYSIOL.2011.208199. PubMed DOI PMC
Téllez-Zenteno J.F., Dhar R., Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain. 2005;128:1188–1198. doi: 10.1093/BRAIN/AWH449. PubMed DOI
Toth R., Zamora M., Ottaway J., Gillbe T., Martin S., Benjaber M., Lamb G., Noone T., Taylor B., Deli A., et al. DyNeuMo mk-2: an investigational circadian-locked neuromodulator with responsive stimulation for applied chronobiology. IEEE Trans. Syst. Man, Cybernetics: Syst. 2020;2020:3433–3440. doi: 10.1109/SMC42975.2020.9283187. PubMed DOI PMC
Urrestarazu E., Iriarte J., Alegre M., Clavero P., Rodríguez-Oroz M.C., Guridi J., Obeso J.A., Artieda J. Beta activity in the subthalamic nucleus during sleep in patients with Parkinson’s disease. Mov. Disord. 2009;24:254–260. doi: 10.1002/MDS.22351. PubMed DOI
Velisar A., Syrkin-Nikolau J., Blumenfeld Z., Trager M.H., Afzal M.F., Prabhakar V., Bronte-Stewart H. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimulation. 2019;12:868–876. doi: 10.1016/j.brs.2019.02.020. PubMed DOI
Videnovic A., Lazar A.S., Barker R.A., Overeem S. ’The clocks that time us’—circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 2014;10:683–693. doi: 10.1038/nrneurol.2014.206. PubMed DOI PMC
Voges B.R., Schmitt F.C., Hamel W., House P.M., Kluge C., Moll C.K.E., Stodieck S.R. Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia. 2015;56:e99–e103. doi: 10.1111/EPI.13045. PubMed DOI
Wagner F.B., Mignardot J.-B., le Goff-Mignardot C.G., Demesmaeker R., Komi S., Capogrosso M., Rowald A., Seáñez I., Caban M., Pirondini E., et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71. doi: 10.1038/s41586-018-0649-2. PubMed DOI
Wailke S., Herzog J., Witt K., Deuschl G., Volkmann J. Effect of controlled-release levodopa on the microstructure of sleep in Parkinson’s disease. Eur. J. Neurol. 2011;18:590–596. doi: 10.1111/J.1468-1331.2010.03213.X. PubMed DOI
Worth P.F. When the going gets tough: how to select patients with Parkinson’s disease for advanced therapies. Pract. Neurol. 2013;13:140–152. doi: 10.1136/PRACTNEUROL-2012-000463. PubMed DOI
Wright J., Macefield V.G., van Schaik A., Tapson J.C. A review of control strategies in closed-loop neuroprosthetic systems. Front. Neurosci. 2016;0:312. doi: 10.3389/FNINS.2016.00312. PubMed DOI PMC
Wulff K., Dijk D.-J., Middleton B., Foster R.G., Joyce E.M. Sleep and circadian rhythm disruption in schizophrenia. Br. J. Psychiatry. 2012;200:308–316. doi: 10.1192/BJP.BP.111.096321. PubMed DOI PMC
Yang W., Hamilton J.L., Kopil C., Beck J.C., Tanner C.M., Albin R.L., Dorsey E.R., Dahodwala N., Cintina I., Hogan P., et al. Current and projected future economic burden of Parkinson’s disease in the US. npj Parkinsons Dis. 2020;6:1–9. PubMed PMC
Yoon D., Frick K.D., Carr D.A., Austin J.K. Economic impact of epilepsy in the United States. Epilepsia. 2009;50:2186–2191. doi: 10.1111/J.1528-1167.2009.02159.X. PubMed DOI
Zahed H., Zuzuarregui J.R.P., Gilron R., Denison T., Starr P.A., Little S. The neurophysiology of sleep in Parkinson’s disease. Mov. Disord. 2021;36:1526–1542. doi: 10.1002/MDS.28562. PubMed DOI
Zaki N.F.W., Yousif M., Bahammam A.S., Spence D.W., Bharti V.K., Subramanian P., Pandi-Perumal S.R. Chronotherapeutics: recognizing the importance of timing factors in the treatment of disease and sleep disorders. Clin. Neuropharmacol. 2019;42:80–87. doi: 10.1097/WNF.0000000000000341. PubMed DOI
Zamora M., Meller S., Kajin F., Sermon J.J., Toth R., Benjaber M., Dijk D.-J., Bogacz R., Worrell G.A., Valentin A., et al. Case report: embedding “digital chronotherapy” into medical devices—a canine validation for controlling status epilepticus through multi-scale rhythmic brain stimulation. Front. Neurosci. 2021;0:1196. doi: 10.3389/FNINS.2021.734265. PubMed DOI PMC
Zamora M., Toth R., Ottaway J., Gillbe T., Martin S., Benjaber M., Lamb G., Noone T., Nairac Z., Constandinou T.G., et al. DyNeuMo mk-1: a fully-implantable, motion-adaptive neurostimulator with configurable response algorithms. bioRxiv. 2020 doi: 10.1101/2020.09.10.292284. Preprint at. PubMed DOI PMC