Embedding digital chronotherapy into bioelectronic medicines

. 2022 Apr 15 ; 25 (4) : 104028. [epub] 20220304

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35313697

Grantová podpora
MC_UU_00003/3 Medical Research Council - United Kingdom

Odkazy

PubMed 35313697
PubMed Central PMC8933700
DOI 10.1016/j.isci.2022.104028
PII: S2589-0042(22)00298-X
Knihovny.cz E-zdroje

Biological rhythms pervade physiology and pathophysiology across multiple timescales. Because of the limited sensing and algorithm capabilities of neuromodulation device technology to-date, insight into the influence of these rhythms on the efficacy of bioelectronic medicine has been infeasible. As the development of new devices begins to mitigate previous technology limitations, we propose that future devices should integrate chronobiological considerations in their control structures to maximize the benefits of neuromodulation therapy. We motivate this proposition with preliminary longitudinal data recorded from patients with Parkinson's disease and epilepsy during deep brain stimulation therapy, where periodic symptom biomarkers are synchronized to sub-daily, daily, and longer timescale rhythms. We suggest a physiological control structure for future bioelectronic devices that incorporates time-based adaptation of stimulation control, locked to patient-specific biological rhythms, as an adjunct to classical control methods and illustrate the concept with initial results from three of our recent case studies using chronotherapy-enabled prototypes.

Zobrazit více v PubMed

Amara A.W., Standaert D.G., Guthrie S., Cutter G., Watts R.L., Walker H.C. Unilateral subthalamic nucleus deep brain stimulation improves sleep quality in Parkinson’s disease. Park. Relat. Disord. 2012;18:63–68. doi: 10.1016/J.PARKRELDIS.2011.09.001. PubMed DOI PMC

Armstrong M.J., Okun M.S. Choosing a Parkinson disease treatment. JAMA. 2020;323:1420. doi: 10.1001/JAMA.2020.1224. PubMed DOI

Attia T.P., Crepeau D., Kremen V., Nasseri M., Guragain H., Steele S.W., Sladky V., Nejedly P., Mivalt F., Herron J.A., et al. Epilepsy personal assistant device—a mobile platform for brain state, dense behavioral and physiology tracking and controlling adaptive stimulation. Front. Neurol. 2021;12:704170. doi: 10.3389/FNEUR.2021.704170. PubMed DOI PMC

Baud M.O., Kleen J.K., Mirro E.A., Andrechak J.C., King-Stephens D., Chang E.F., Rao V.R. Multi-day rhythms modulate seizure risk in epilepsy. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-017-02577-y. PubMed DOI PMC

Baumgartner A.J., Kushida C.A., Summers M.O., Kern D.S., Abosch A., Thompson J.A. Basal ganglia local field potentials as a potential biomarker for sleep disturbance in Parkinson’s disease. Front. Neurol. 2021;12:1957. doi: 10.3389/FNEUR.2021.765203/BIBTEX. PubMed DOI PMC

Bergey G.K., Morrell M.J., Mizrahi E.M., Goldman A., King-Stephens D., Nair D., Srinivasan S., Jobst B., Gross R.E., Shields D.C., et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015;84:810–817. doi: 10.1212/WNL.0000000000001280. PubMed DOI PMC

Blachut B., Hoppe C., Surges R., Elger C., Helmstaedter C. Subjective seizure counts by epilepsy clinical drug trial participants are not reliable. Epilepsy Behav. 2017;67:122–127. doi: 10.1016/J.YEBEH.2016.10.036. PubMed DOI

Blachut B., Hoppe C., Surges R., Stahl J., Elger C.E., Helmstaedter C. Counting seizures: the primary outcome measure in epileptology from the patients’ perspective. Seizure. 2015;29:97–103. doi: 10.1016/J.SEIZURE.2015.03.004. PubMed DOI

Burish M.J., Chen Z., Yoo S.-H. Emerging relevance of circadian rhythms in headaches and neuropathic pain. Acta Physiol. 2019;225:e13161. doi: 10.1111/APHA.13161. PubMed DOI PMC

Cardinali D.P., Pandi-Perumal S.R. Clinical pharmacology of sleep. 2006. Chronopharmacology and its implications to the pharmacology of sleep; pp. 197–2006. DOI

Cederroth C.R., Albrecht U., Bass J., Brown S.A., Dyhrfjeld-Johnsen J., Gachon F., Green C.B., Hastings M.H., Helfrich-Förster C., Hogenesch J.B., et al. Medicine in the fourth dimension. Cell Metab. 2019;30:238–250. doi: 10.1016/J.CMET.2019.06.019. PubMed DOI PMC

Crago P., Lan N., Veltink P., Abbas J., Kantor C. New control strategies for neuroprosthetic systems. J. Rehabil. Res. Dev. 1996;33:158–172. PubMed

Duffy J., Wright K., Jr. Entrainment of the human circadian system by light. J. Biol. Rhythm. 2005;20:326–338. doi: 10.1177/0748730405277983. PubMed DOI

den Dulk K., Bouwels L., Lindemans F., Rankin I., Brugada P., Wellens H.J.J. The activitrax rate responsive pacemaker system. Am. J. Cardiol. 1988;61:107–112. doi: 10.1016/0002-9149(88)91314-8. PubMed DOI

Fisher R., Salanova V., Witt T., Worth R., Henry T., Gross R., Oommen K., Osorio I., Nazzaro J., Labar D., et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908. doi: 10.1111/J.1528-1167.2010.02536.X. PubMed DOI

Geller E.B., Skarpaas T.L., Gross R.E., Goodman R.R., Barkley G.L., Bazil C.W., Berg M.J., Bergey G.K., Cash S.S., Cole A.J., et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia. 2017;58:994–1004. doi: 10.1111/EPI.13740. PubMed DOI

Germain A., Kupfer D.J. Circadian rhythm disturbances in depression. Hum. Psychopharmacol. Clin. Exp. 2008;23:571–585. doi: 10.1002/HUP.964. PubMed DOI PMC

Gilron R., Little S., Wilt R., Perrone R., Anso J., Starr P.A. Sleep-aware adaptive deep brain stimulation control: chronic use at home with dual independent linear discriminate detectors. Front. Neurosci. 2021;0:1307. doi: 10.3389/FNINS.2021.732499. PubMed DOI PMC

Gondhalekar R., Dassau E., Zisser H.C., Doyle F.J. Periodic-zone model predictive control for diurnal closed-loop operation of an artificial pancreas. J. Diabetes Sci. Technol. 2013;7:1446–1460. doi: 10.1177/193229681300700605. PubMed DOI PMC

Grado L.L., Johnson M.D., Netoff T.I. Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease. PLoS Comput. Biol. 2018;14:1–23. doi: 10.1371/journal.pcbi.1006606. PubMed DOI PMC

Gregg N.M., Nasseri M., Kremen V., Patterson E.E., Sturges B.K., Denison T.J., Brinkmann B.H., Worrell G.A. Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy. Brain Commun. 2020;2:fcaa008. doi: 10.1093/BRAINCOMMS/FCAA008. PubMed DOI PMC

Gregg N.M., Sladky V., Nejedly P., Mivalt F., Kim I., Balzekas I., Sturges B.K., Crowe C., Patterson E.E., van Gompel J.J., et al. Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy. Sci. Rep. 2021;11:1–12. doi: 10.1038/s41598-021-03555-7. PubMed DOI PMC

Hastings M.H., Maywood E.S., Brancaccio M. The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology. 2019;8:13. doi: 10.3390/BIOLOGY8010013. PubMed DOI PMC

Hjort N., Østergaard K., Dupont E. Improvement of sleep quality in patients with advanced Parkinson’s disease treated with deep brain stimulation of the subthalamic nucleus. Mov. Disord. 2004;19:196–199. doi: 10.1002/MDS.10639. PubMed DOI

Hoppe C., Poepel A., Elger C.E. Epilepsy: accuracy of patient seizure counts. Arch. Neurol. 2007;64:1595–1599. doi: 10.1001/ARCHNEUR.64.11.1595. PubMed DOI

Houk J.C. Control strategies in physiological systems. FASEB J. 1988;2:97–107. doi: 10.1096/FASEBJ.2.2.3277888. PubMed DOI

Jehi L., Friedman D., Carlson C., Cascino G., Dewar S., Elger C., Engel J., Knowlton R., Kuzniecky R., McIntosh A., et al. The evolution of epilepsy surgery between 1991 and 2011 in nine major epilepsy centers across the United States, Germany, and Australia. Epilepsia. 2015;56:1526–1533. doi: 10.1111/EPI.13116. PubMed DOI PMC

Karoly P.J., Goldenholz D.M., Freestone D.R., Moss R.E., Grayden D.B., Theodore W.H., Cook M.J. Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study. Lancet Neurol. 2018;17:977–985. doi: 10.1016/S1474-4422(18)30274-6. PubMed DOI

Karoly P.J., Rao V.R., Gregg N.M., Worrell G.A., Bernard C., Cook M.J., Baud M.O. Cycles in epilepsy. Nat. Rev. Neurol. 2021;17:267–284. doi: 10.1038/s41582-021-00464-1. PubMed DOI

Khan S., Nobili L., Khatami R., Loddenkemper T., Cajochen C., Dijk D.J., Eriksson S.H. Circadian rhythm and epilepsy. Lancet Neurol. 2018;17:1098–1108. doi: 10.1016/S1474-4422(18)30335-1. PubMed DOI

Khodaei M.J., Candelino N., Mehrvarz A., Jalili N. Physiological closed-loop control (PCLC) systems: review of a modern frontier in automation. IEEE Access. 2020;8:23965–24005. doi: 10.1109/ACCESS.2020.2968440. DOI

Kim P., Oster H., Lehnert H., Schmid S.M., Salamat N., Barclay J.L., Maronde E., Inder W., Rawashdeh O. Coupling the circadian clock to homeostasis: the role of period in timing physiology. Endocr. Rev. 2019;40:66–95. doi: 10.1210/ER.2018-00049. PubMed DOI

Kitaoka K., Miura H., Kitamura M., Akutagawa M., Kinouchi Y., Yoshizaki K. Feed-forward changes in carotid blood flow velocity during active standing. Neurosci. Lett. 2011;487:240–245. doi: 10.1016/J.NEULET.2010.10.030. PubMed DOI

Kremen V., Brinkmann B.H., Kim I., Guragain H., Nasseri M., Magee A.L., Pal Attia T., Nejedly P., Sladky V., Nelson N., et al. Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. 2018;6:2500112. doi: 10.1109/JTEHM.2018.2869398. PubMed DOI PMC

Landolt H., Moser S., Wieser H., Borbély A., Dijk D. Intracranial temperature across 24-hour sleep-wake cycles in humans. Neuroreport. 1995;6:913–917. doi: 10.1097/00001756-199504190-00022. PubMed DOI

Leng Y., Musiek E.S., Hu K., Cappuccio F.P., Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019;18:307–318. doi: 10.1016/S1474-4422(18)30461-7. PubMed DOI PMC

Little S., Beudel M., Zrinzo L., Foltynie T., Limousin P., Hariz M., Neal S., Cheeran B., Cagnan H., Gratwicke J., et al. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 2016;87:717–721. doi: 10.1136/jnnp-2015-310972. PubMed DOI PMC

Lloyd M., Reynolds D., Sheldon T., Stromberg K., Hudnall J.H., Demmer W.M., Omar R., Ritter P., Hummel J., Mont L., et al. Rate adaptive pacing in an intracardiac pacemaker. Heart Rhythm. 2017;14:200–205. doi: 10.1016/J.HRTHM.2016.11.016. PubMed DOI

Logan R.W., McClung C.A. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat. Rev. Neurosci. 2018;20:49–65. doi: 10.1038/s41583-018-0088-y. PubMed DOI PMC

Lu M., Wei X., Che Y., Wang J., Loparo K.A. Application of reinforcement learning to deep brain stimulation in a computational model of Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2020;28:339–349. doi: 10.1109/TNSRE.2019.2952637. PubMed DOI

Ly J.Q.M., Gaggioni G., Chellappa S.L., Papachilleos S., Brzozowski A., Borsu C., Rosanova M., Sarasso S., Middleton B., Luxen A., et al. Circadian regulation of human cortical excitability. Nat. Commun. 2016;7:1–10. doi: 10.1038/ncomms11828. PubMed DOI PMC

Mantovani S., Smith S.S., Gordon R., O’Sullivan J.D. An overview of sleep and circadian dysfunction in Parkinson’s disease. J. Sleep Res. 2018;27:e12673. doi: 10.1111/JSR.12673. PubMed DOI

Matsukawa K., Liang N., Ishii K. Central command: feedforward control of the sympathoadrenal system during exercise. J. Phys. Fit. Sports Med. 2012;1:573–577. doi: 10.7600/JPFSM.1.573. DOI

Merello M., Hughes A., Colosimo C., Hoffman M., Starkstein S., Leiguarda R. Sleep benefit in Parkinson’s disease. Mov. Disord. 1997;12:506–508. doi: 10.1002/MDS.870120405. PubMed DOI

Mivalt F., Kremen V., Sladky V., Balzekas I., Nejedly P., Gregg N., Lundstrom B., Lepkova K., Pridalova T., Brinkmann B.H., et al. Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans. medRxiv. 2021 doi: 10.1101/2021.08.10.21261645. Preprint at. PubMed DOI PMC

Mizrahi-Kliger A.D., Kaplan A., Israel Z., Deffains M., Bergman H. Basal ganglia beta oscillations during sleep underlie Parkinsonian insomnia. Proc. Natl. Acad. Sci. U S A. 2020;117:17359–17368. doi: 10.1073/pnas.2001560117. PubMed DOI PMC

Monteleone P., Martiadis V., Maj M. Circadian rhythms and treatment implications in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2011;35:1569–1574. doi: 10.1016/J.PNPBP.2010.07.028. PubMed DOI

Moore J.L., Carvalho D.Z., St Louis E.K., Bazil C. Sleep and epilepsy: a focused review of pathophysiology, clinical syndromes, Co-morbidities, and therapy. Neurotherapeutics. 2021;18:170–180. doi: 10.1007/S13311-021-01021-W. PubMed DOI PMC

Morrell M.J. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77:1295–1304. doi: 10.1212/WNL.0B013E3182302056. PubMed DOI

Muto V., Jaspar M., Meyer C., Kussé C., Chellappa S.L., Degueldre C., Balteau E., Bourdiec A.S.-L., Luxen A., Middleton B., et al. Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science. 2016;353:687–690. doi: 10.1126/SCIENCE.AAD2993. PubMed DOI

Naber W.C., Fronczek R., Haan J., Doesborg P., Colwell C.S., Ferrari M.D., Meijer J.H. The biological clock in cluster headache: a review and hypothesis. Cephalalgia. 2019;39:1855–1866. doi: 10.1177/0333102419851815. PubMed DOI

Nair D.R., Laxer K.D., Weber P.B., Murro A.M., Park Y.D., Barkley G.L., Smith B.J., Gwinn R.P., Doherty M.J., Noe K.H., et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology. 2020;95:e1244–e1256. doi: 10.1212/WNL.0000000000010154. PubMed DOI PMC

Parhizgar F., Nugent K., Raj R. Obstructive sleep apnea and respiratory complications associated with vagus nerve stimulators. J. Clin. Sleep Med. 2011;7:401–407. doi: 10.5664/JCSM.1204. PubMed DOI PMC

Power M.L., Schulkin J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite. 2008;50:194–206. doi: 10.1016/J.APPET.2007.10.006. PubMed DOI PMC

Roenneberg T. What is chronotype? Sleep Biol. Rhythm. 2012;10:75–76.

Ruben M.D., Smith D.F., FitzGerald G.A., Hogenesch J.B. Dosing time matters. Science. 2019;365:547–549. doi: 10.1126/SCIENCE.AAX7621. PubMed DOI PMC

Ruoff L., Jarosiewicz B., Zak R., Tcheng T.K., Neylan T.C., Rao V.R. Sleep disruption is not observed with brain-responsive neurostimulation for epilepsy. Epilepsia Open. 2020;5:155–165. doi: 10.1002/EPI4.12382. PubMed DOI PMC

Rusak B., Meijer J.H., Harrington M.E. Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract. Brain Res. 1989;493:283–291. doi: 10.1016/0006-8993(89)91163-3. PubMed DOI

Salanova V., Sperling M.R., Gross R.E., Irwin C.P., Vollhaber J.A., Giftakis J.E., Fisher R.S. The SANTÉ study at 10 years of follow-up: effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia. 2021;62:1306–1317. doi: 10.1111/EPI.16895. PubMed DOI

Salanova V., Witt T., Worth R., Henry T.R., Gross R.E., Nazzaro J.M., Labar D., Sperling M.R., Sharan A., Sandok E., et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015;84:1017–1025. doi: 10.1212/WNL.0000000000001334. PubMed DOI PMC

Schal C., Bossert H.W., Theor Biol J., Barad M.L., Haugen D.A. Suprachiasmatic stimulation phase shifts rodent circadian rhythms. Science. 1982;215:1407–1409. doi: 10.1126/SCIENCE.7063851. PubMed DOI

Schrag A., Quinn N. Dyskinesias and motor fluctuations in Parkinson’s diseaseA community-based study. Brain. 2000;123:2297–2305. doi: 10.1093/BRAIN/123.11.2297. PubMed DOI

Sharma V.D., Sengupta S., Chitnis S., Amara A.W. Deep brain stimulation and sleep-wake disturbances in Parkinson disease: a review. Front. Neurol. 2018;0:697. doi: 10.3389/FNEUR.2018.00697. PubMed DOI PMC

Sladky V., Nejedly P., Mivalt F., Brinkmann B.H., Kim I., Louis E.K. st., Gregg N.M., Lundstrom B.N., Crowe C.M., Attia T.P., et al. Distributed brain Co-processor for neurophysiologic tracking and adaptive stimulation: application to drug resistant epilepsy. bioRxiv. 2021 doi: 10.1101/2021.03.08.434476. Preprint at. DOI

Smolensky M.H., Hermida R.C., Geng Y.J. Chronotherapy of cardiac and vascular disease: timing medications to circadian rhythms to optimize treatment effects and outcomes. Curr. Opin. Pharmacol. 2021;57:41–48. doi: 10.1016/J.COPH.2020.10.014. PubMed DOI

Smolensky M.H., Peppas N.A. Chronobiology, drug delivery, and chronotherapeutics. Adv. Drug Deliv. Rev. 2007;59:828–851. doi: 10.1016/J.ADDR.2007.07.001. PubMed DOI

Smolensky M.H., Portaluppi F., Manfredini R., Hermida R.C., Tiseo R., Sackett-Lundeen L.L., Haus E.L. Diurnal and twenty-four hour patterning of human diseases: acute and chronic common and uncommon medical conditions. Sleep Med. Rev. 2015;21:12–22. doi: 10.1016/J.SMRV.2014.06.005. PubMed DOI

Stanslaski S., Herron J., Chouinard T., Bourget D., Isaacson B., Kremen V., Opri E., Drew W., Brinkmann B.H., Gunduz A., et al. A chronically implantable neural coprocessor for investigating the treatment of neurological disorders. IEEE Trans. Biomed. Circuits Syst. 2018;12:1230–1245. doi: 10.1109/TBCAS.2018.2880148. PubMed DOI PMC

Steele T.A., St Louis E.K., Videnovic A., Auger R.R. Circadian rhythm sleep–wake disorders: a contemporary review of neurobiology, treatment, and dysregulation in neurodegenerative disease. Neurotherapeutics. 2021;18:53–74. doi: 10.1007/S13311-021-01031-8. PubMed DOI PMC

Sun F., Morrell M. The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev. Med. devices. 2014;11:563–572. doi: 10.1586/17434440.2014.947274. PubMed DOI

Tan C.O., Taylor J.A. Feedback and feedforward sympathetic haemodynamic control: chicken or egg? J. Physiol. 2011;589:1867. doi: 10.1113/JPHYSIOL.2011.208199. PubMed DOI PMC

Téllez-Zenteno J.F., Dhar R., Wiebe S. Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain. 2005;128:1188–1198. doi: 10.1093/BRAIN/AWH449. PubMed DOI

Toth R., Zamora M., Ottaway J., Gillbe T., Martin S., Benjaber M., Lamb G., Noone T., Taylor B., Deli A., et al. DyNeuMo mk-2: an investigational circadian-locked neuromodulator with responsive stimulation for applied chronobiology. IEEE Trans. Syst. Man, Cybernetics: Syst. 2020;2020:3433–3440. doi: 10.1109/SMC42975.2020.9283187. PubMed DOI PMC

Urrestarazu E., Iriarte J., Alegre M., Clavero P., Rodríguez-Oroz M.C., Guridi J., Obeso J.A., Artieda J. Beta activity in the subthalamic nucleus during sleep in patients with Parkinson’s disease. Mov. Disord. 2009;24:254–260. doi: 10.1002/MDS.22351. PubMed DOI

Velisar A., Syrkin-Nikolau J., Blumenfeld Z., Trager M.H., Afzal M.F., Prabhakar V., Bronte-Stewart H. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimulation. 2019;12:868–876. doi: 10.1016/j.brs.2019.02.020. PubMed DOI

Videnovic A., Lazar A.S., Barker R.A., Overeem S. ’The clocks that time us’—circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 2014;10:683–693. doi: 10.1038/nrneurol.2014.206. PubMed DOI PMC

Voges B.R., Schmitt F.C., Hamel W., House P.M., Kluge C., Moll C.K.E., Stodieck S.R. Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients. Epilepsia. 2015;56:e99–e103. doi: 10.1111/EPI.13045. PubMed DOI

Wagner F.B., Mignardot J.-B., le Goff-Mignardot C.G., Demesmaeker R., Komi S., Capogrosso M., Rowald A., Seáñez I., Caban M., Pirondini E., et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71. doi: 10.1038/s41586-018-0649-2. PubMed DOI

Wailke S., Herzog J., Witt K., Deuschl G., Volkmann J. Effect of controlled-release levodopa on the microstructure of sleep in Parkinson’s disease. Eur. J. Neurol. 2011;18:590–596. doi: 10.1111/J.1468-1331.2010.03213.X. PubMed DOI

Worth P.F. When the going gets tough: how to select patients with Parkinson’s disease for advanced therapies. Pract. Neurol. 2013;13:140–152. doi: 10.1136/PRACTNEUROL-2012-000463. PubMed DOI

Wright J., Macefield V.G., van Schaik A., Tapson J.C. A review of control strategies in closed-loop neuroprosthetic systems. Front. Neurosci. 2016;0:312. doi: 10.3389/FNINS.2016.00312. PubMed DOI PMC

Wulff K., Dijk D.-J., Middleton B., Foster R.G., Joyce E.M. Sleep and circadian rhythm disruption in schizophrenia. Br. J. Psychiatry. 2012;200:308–316. doi: 10.1192/BJP.BP.111.096321. PubMed DOI PMC

Yang W., Hamilton J.L., Kopil C., Beck J.C., Tanner C.M., Albin R.L., Dorsey E.R., Dahodwala N., Cintina I., Hogan P., et al. Current and projected future economic burden of Parkinson’s disease in the US. npj Parkinsons Dis. 2020;6:1–9. PubMed PMC

Yoon D., Frick K.D., Carr D.A., Austin J.K. Economic impact of epilepsy in the United States. Epilepsia. 2009;50:2186–2191. doi: 10.1111/J.1528-1167.2009.02159.X. PubMed DOI

Zahed H., Zuzuarregui J.R.P., Gilron R., Denison T., Starr P.A., Little S. The neurophysiology of sleep in Parkinson’s disease. Mov. Disord. 2021;36:1526–1542. doi: 10.1002/MDS.28562. PubMed DOI

Zaki N.F.W., Yousif M., Bahammam A.S., Spence D.W., Bharti V.K., Subramanian P., Pandi-Perumal S.R. Chronotherapeutics: recognizing the importance of timing factors in the treatment of disease and sleep disorders. Clin. Neuropharmacol. 2019;42:80–87. doi: 10.1097/WNF.0000000000000341. PubMed DOI

Zamora M., Meller S., Kajin F., Sermon J.J., Toth R., Benjaber M., Dijk D.-J., Bogacz R., Worrell G.A., Valentin A., et al. Case report: embedding “digital chronotherapy” into medical devices—a canine validation for controlling status epilepticus through multi-scale rhythmic brain stimulation. Front. Neurosci. 2021;0:1196. doi: 10.3389/FNINS.2021.734265. PubMed DOI PMC

Zamora M., Toth R., Ottaway J., Gillbe T., Martin S., Benjaber M., Lamb G., Noone T., Nairac Z., Constandinou T.G., et al. DyNeuMo mk-1: a fully-implantable, motion-adaptive neurostimulator with configurable response algorithms. bioRxiv. 2020 doi: 10.1101/2020.09.10.292284. Preprint at. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...