Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, historické články, přehledy
PubMed
38752773
PubMed Central
PMC11412343
DOI
10.33549/physiolres.935391
PII: 935391
Knihovny.cz E-zdroje
- MeSH
- akademie a ústavy MeSH
- biomedicínský výzkum trendy MeSH
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- epilepsie * patofyziologie MeSH
- lidé MeSH
- mozek účinky léků fyziologie růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- dějiny 20. století MeSH
- dějiny 21. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
- Geografické názvy
- Česká republika MeSH
Starting from simple clinical statistics, the spectrum of methods used in epilepsy research in the Institute of Physiology of the Czechoslovak (now Czech) Academy of Sciences progressively increased. Professor Servít used electrophysiological methods for study of brain activity in lower vertebrates, neuropathology was focused on electronmicroscopic study of cortical epileptic focus and ion-sensitive microelectrodes were used for studies of cortical direct current potentials. Developmental studies used electrophysiological methods (activity and projection of cortical epileptic foci, EEG under the influence of convulsant drugs, hippocampal, thalamic and cortical electrical stimulation for induction of epileptic afterdischarges and postictal period). Extensive pharmacological studies used seizures elicited by convulsant drugs (at first pentylenetetrazol but also other GABA antagonists as well as agonists of glutamate receptors). Motor performance and behavior were also studied during brain maturation. The last but not least molecular biology was included into the spectrum of methods. Many original data were published making a background of position of our laboratory in the first line of laboratories interested in brain development.
Zobrazit více v PubMed
Servít Z, Bureš J. Effect of electrotonus on readiness for convulsions in various stages of phylogenic development (Article in Russian) Chekh Fiziol. 1952;1:301–311. PubMed
Servít Z, Bureš J. Cerebral water metabolism and convulsion threshold in frogs (Article in Czech) Cesk Fysiol. 1952;1:88–92. PubMed
Nováková V, Lodin Z, Servít Z, Chocholová L. Relation of experimental neuroses to audiogernic epilepsy (Article in Czech) Cesk Fyziol. 1957;6:389–396. PubMed
Chocholová L. The role of cerebral cortex in audiogenic seizures in the rat. Physiol Bohemoslov. 1962;11:452–457. PubMed
Chocholová L. The effect of epileptogenic acoustic stimulation and seizures on the retention of a memory trace in the rat. Physiol Bohemoslov. 1965;14:523–529. PubMed
Servít Z, Šterc J. Audiogenic epileptic seizures evoked in rats by artificial epileptogenic foci. Nature. 1958;181:1475–1476. doi: 10.1038/1811475b0. PubMed DOI
Servít Z. Prophylactic treatment of post-traumatic audiogenic epilepsy. Nature. 1960;188:669–670. doi: 10.1038/188669a0. PubMed DOI
Machek J, Horák F. Studies on function of the cerebral cortex in the mechanism determining the course and initial motor deviations in audiogenic epileptic seizures in laboratory rats (Article in Czech) Cesk Fysiol. 1958;7:196–197. PubMed
Holubář J, Hanke B, Malík V. Intracellular recording from cortical pyramids and small interneurons as identified by subsequent staining with the recording microelectrode. Exp Neurol. 1967;19:257–264. doi: 10.1016/0014-4886(67)90024-6. PubMed DOI
Fischer J, Holubář J, Malík V. A new method of producing chronic epileptogenic cortical foci in rats. Physiol Bohemoslov. 1967;16:272–277. PubMed
Holubář J, Fischer J. Electrophysiological properties of the epileptogenic cortical foci produced by a new cobalt-gelatine method in rats an attempt to correlate the electrophysiological, histological and histochemical data. Physiol Bohemoslov. 1967;16:278–284. PubMed
Fischer J, Holubář J, Malík V. Dehydrogenase patterns of the experimental epileptogenic cortical focus in the rat. A correlation of histochemical and electrophysiological findings. Acta Histochem. 1968;31:296–304. PubMed
Fischer J, Holubář J, Malík V. Neurohistological study of the development of experimental epileptogenic cortical cobalt-gelatine foci in rats and their correlation with the onset of epileptic electrical activity. Acta Neuropathol. 1968;11:45–54. doi: 10.1007/BF00692794. PubMed DOI
Fischer J. Electron microscopic changes in the perikarya and in the processes of ganglion cells in the cobalt gelatine epileptogenic focus (their correlation with electrophysiological data) Physiol Bohemoslov. 1969;18:387–394. PubMed
Fischer J. Electron microscopic alterations in the vicinity of epileptogenic cobalt-gelatine necrosis in the cerebral cortex of the rat A contribution to the ultrastructure of “plasmatic infiltration” of the central nervous system. Acta Neuropathol. 1969;14:201–214. doi: 10.1007/BF00685300. PubMed DOI
Fischer J. Electron microscopy findings with respect to epileptogenic cobalt necrosis in the rat brain (Article in German) Experientia. 1968;24:162. doi: 10.1007/BF02146961. PubMed DOI
Fischer J. Attempt at an ultrastructural analysis of blood-brain barrier damage in the epileptogenic zone round experimental cobalt-gelatine necrosis in the rat. Physiol Bohemoslov. 1972;21:171–176. PubMed
Servít Z. Phylogenesis and ontogenesis of the epileptic seizure. A comparative study. World Neurol. 1962;3:259–274. PubMed
Servít Z. Comparative pathophysiology of the epileptic seizure (Article in French) Actual Neurophysiol (Paris) 1964;5:163–179. PubMed
Servít Z, Machek J, Fischer J. Electrical activity of the frog brain during electrically induced seizures. A comparative study of the spike and wave complex. Electroenceph Clin Neurophysiol. 1965;19:162–171. doi: 10.1016/0013-4694(65)90226-9. PubMed DOI
Servít Z, Strejčková A. Comparative pathophysiology of the paroxysmal electroencephalogram Paroxysmal electroencephalogram (spike and wave activity) in the lizard (Lacerta agilis) Physiol Bohemoslov. 1966;15:117–121. PubMed
Servít Z, Strejčková A, Fischer J. Effects of strychnine and gamma-aminobutyric acid on spike and wave activity in the frog telencephalon. Exp Neurol. 1967;17:389–402. doi: 10.1016/0014-4886(67)90115-X. PubMed DOI
Servít Z, Strejčková A, Volanschi D. An epileptogenic focus in the frog telencephalon. Pathways of propagation of focal activity. Exp Neurol. 1968;21:383–396. doi: 10.1016/0014-4886(68)90060-5. PubMed DOI
Volanschi D, Servít Z. Epileptic focus in the forebrain of the turtle. Exp Neurol. 1969;24:137–146. doi: 10.1016/0014-4886(69)90011-9. PubMed DOI
Servít Z. Focal epileptic activity and its spread in the brain of lower vertebrates. A comparative electrophysiological study. Epilepsia. 1970;11:227–240. doi: 10.1111/j.1528-1157.1970.tb03887.x. PubMed DOI
Servít Z, Strejčková A. An electrographic epileptic focus in the fish forebrain. Conditions and pathways of propagation of focal and paroxysmal activity. Brain Res. 1970;17:103–113. doi: 10.1016/0006-8993(70)90310-0. PubMed DOI
Servít Z, Strejčková A. Epileptic focus in the frog forebrain. Triggering of the focal discharge with sensory stimuli. Exp Neurol. 1970;28:371–383. doi: 10.1016/0014-4886(70)90174-3. PubMed DOI
Servít Z, Strejčková A, Volanschi D. Epileptic focus in the forebrain of the turtle (Testudo graeca). Triggering of focal discharges with different sensory stimuli. Physiol Bohemoslov. 1971;20:221–228. PubMed
Servít Z, Strejčková A. Thalamocortical relations and the genesis of epileptic electrographic phenomena in the forebrain of the turtle. Exp Neurol. 1972;35:50–60. doi: 10.1016/0014-4886(72)90059-3. PubMed DOI
Servít Z, Strejcková A. Experimental thalamic focus and thalamocortical epileptogenic mechanisms in the brain of turtle. Epilepsia. 1973;14:437–445. doi: 10.1111/j.1528-1157.1973.tb03984.x. PubMed DOI
Servít Z, Strejčková A. Thalamocortical relations in the brain of the frog, Their role in the genesis of epileptic electrographic phenomena. Physiol Bohemoslov. 1975;24:315–324. PubMed
Servít Z. Pathophysiological principles of prevention of post-traumatic epilepsy (Article in Czech) Cas Lek Cesk. 1969;108:129–133. PubMed
Servít Z, Musil F. Prophylactic treatment of posttraumatic epilepsy: results of a long-term follow-up in Czechoslovakia. Epilepsia. 1981;22:315–320. doi: 10.1111/j.1528-1157.1981.tb04115.x. PubMed DOI
Servít Z, Krištof M, Kolínová M. Activation of epileptic electrographic phenomena in the human EEG by nasal air flow. Physiol Bohemoslov. 1977;26:499–506. PubMed
Krištof M, Servít Z, Manas K. Activating effect of nasal air flow on epileptic electrographic abnormalities in the human EEG. Evidence for the reflect origin of the phenomenon. Physiol Bohemoslov. 1981;30:73–77. PubMed
Servít Z, Krištof M, Strejčková A. Activating effect of nasal and oral hyperventilation on epileptic electrographic phenomena: reflex mechanisms of nasal origin. Epilepsia. 1981;22:321–329. doi: 10.1111/j.1528-1157.1981.tb04116.x. PubMed DOI
Krištof M, Preiss J, Servít Z. Physiological asymmetry of brain functions--its influence on the lateralization, symptomatology and course of the epileptic process. Physiol Bohemoslov. 1986;35:447–455. PubMed
Machek J, Ujec E, Pavlík V. Cortical extracellular potassium concentration during the development of the interhemispheric response into the selfsustained afterdischarge. Physiol Bohemoslov. 1975;24:41–44. PubMed
Machek J, Ujec E, Pavlík V. Extracellular potassium concentration and focal electrical potentials elicited in the cerebral cortex of rat by interhemispheric stimulation. Neurosci Lett. 1976;2:147–152. doi: 10.1016/0304-3940(76)90006-9. PubMed DOI
Machek J, Ujec E, Pavlík V, Horák F. Interhemispheric field potentials, spreading depression and kindling. Neurosci Lett. 1977;4:337–341. doi: 10.1016/0304-3940(77)90180-X. PubMed DOI
Machek J, Ujec E, Pavlík V. Slow potential changes in experimental neocortical propagated foci. Neurosci Lett. 1981;25:327–332. doi: 10.1016/0304-3940(81)90413-4. PubMed DOI
Roldán E, Radil-Weiss T, Chocholová L. Influence of chlordiazepoxide on paroxysmal EEG activity induced by hippocampal and-or thalamic cobalt foci. Psychopharmacologia. 1971;19:266–272. doi: 10.1007/BF00401943. PubMed DOI
Roldán E, Radil-Weiss T, Chocholová L. Epileptic electroencephalographic activity induced by cobalt foci in the dorsal hippocampus and-or thalamus. Int J Neurosci. 1971;2:293–300. doi: 10.3109/00207457109147012. PubMed DOI
Chocholová L, Kolínová M, Fischer J. Stimulation of the thalamus and its effect on electrographic manifestations of the brain in unrestrained rats. Physiol Bohemoslov. 1977;26:507–515. PubMed
Kolínová M, Chocholová L. Stimulation of the hippocampus and its effect on electrographic manifestations of the brain in unrestrained rats. Physiol Bohemoslov. 1977;26:517–224. PubMed
Kolínová M, Chocholová L. The relationship between vigilance and cortical EEG manifestations after electrical stimulation of the thalamus and hippocampus in unrestrained rats. Physiol Bohemoslov. 1978;27:321–328. PubMed
Fischer J. Electron microscopy findings with respect to epileptogenic cobalt necrosis in the rat brain (Article in German) Experientia. 1968;24:162. doi: 10.1007/BF02146961. PubMed DOI
Fischer J. Electron microscopic alterations in the vicinity of epileptogenic cobalt-gelatine necrosis in the cerebral cortex of the rat. A contribution to the ultrastructure of “plasmatic infiltration” of the central nervous system. Acta Neuropathol. 1969;14:201–214. doi: 10.1007/BF00685300. PubMed DOI
Fischer J. Attempt at an ultrastructural analysis of blood-brain barrier damage in the epileptogenic zone round experimental cobalt-gelatine necrosis in the rat. Physiol Bohemoslov. 1972;21:171–176. PubMed
Fischer J. Change in the number of vesicles in synapses of a projected epileptic cortical focus in rats. Physiol Bohemoslov. 1973;22:537–42. PubMed
Fischer J. Electron microscopic changes in the active zone of the synapses in an acute projected epileptic cortical focus in the rat. Physiol Bohemoslov. 1977;26:189–192. PubMed
Nagy Z, Fischer J. Development of perifocal edema in experimental epilepsy nduced by cobalt-gelatin. Acta Neuropathol. 1978;41:191–195. doi: 10.1007/BF00690434. PubMed DOI
Langmeier M, Fischer J. The thinning of synaptic and glial membranes in an acute projected epileptic cortical focus in the rat. An electronmicroscopical, morphometrical study. Physiol Bohemoslov. 1979;28:381–384. PubMed
Fischer J, Langmeier M. Changes in the number, size, and shape of synaptic vesicles in an experimental, projected cortical epileptic focus in the rat. Epilepsia. 1980;21:571–585. doi: 10.1111/j.1528-1157.1980.tb04311.x. PubMed DOI
Langmeier M, Fischer J, Mareš J. Number of synaptic vesicles in the rat somatosensory cortex after repetitive electrical stimulation prolonging self-sustained after-discharges. Epilepsia. 1980;21:255–260. doi: 10.1111/j.1528-1157.1980.tb04071.x. PubMed DOI
Langmeier M, Fischer J, Mareš J. Ultrastructural changes in cortical synapses shortly after termination of a seizure during kindling. Physiol Bohemoslov. 1982;31:213–216. PubMed
Havel J, Langmeier M, Fischer J, Mareš J. Changes in the size and shape of synaptic vesicles in the sensorimotor cortex of the rat brain after repeated epileptic seizures. Physiol Bohemoslov. 1982;31:91–94. PubMed
Langmeier M, Mareš J, Fischer J. Number of synaptic vesicles in rat cortex immediately after cessation of the self-sustained afterdischarge during kindling. Epilepsia. 1983;24:616–627. doi: 10.1111/j.1528-1157.1983.tb03427.x. PubMed DOI
Fischer J, Mareš P, Kostka J, Malík V, Filip J. Na-G-penicillin penetration into rat cerebral cortex and formation of an epileptic focus. Physiol Bohemoslov. 1978;27:171–177. PubMed
Mareš P. Bioelectrical activity of an epileptogenic focus in rat neocortex. Brain Res. 1973;56:203–213. doi: 10.1016/0006-8993(73)90335-1. PubMed DOI
Mareš P. Ontogenetic development of bioelectrical activity of the epileptogenic focus in rat neocortex. Neuropadiatrie. 1973;4:434–445. doi: 10.1055/s-0028-1091759. PubMed DOI
Mareš P. Symmetrical epileptogenic foci in immature rat cerebral cortex. Epilepsia. 1973;14:427–435. doi: 10.1111/j.1528-1157.1973.tb03983.x. PubMed DOI
Mareš J, Mareš P. Triggering of discharges from an epileptogenic focus in the rat by stimulation of the contralateral hemisphere. An ontogenetic study. Physiol Bohemoslov. 1978;27:15–22. PubMed
Mareš P, Filip J, Mareš J. The role of the corpus callosum in the interhemispheric transmission of epileptic interictal activity. Physiol Bohemoslov. 1978;27:23–29. PubMed
Mareš J, Mareš P, Trojan S. The ontogenesis of cortical self-sustained after-discharges in rats. Epilepsia. 1980;21:111–121. doi: 10.1111/j.1528-1157.1980.tb04051.x. PubMed DOI
Mareš P, Schickerová R. Seizures elicited by subcutaneous injection of metrazol during ontogenesis in rats. Activ Nerv Super. 1980;22:264–248. PubMed
Mareš P, Marešová D, Schickerová R. Effect of antiepileptic drugs on metrazol convulsions during ontogenesis in the rat. Physiol Bohemoslov. 1981;30:113–121. PubMed
Pohl M, Mareš P. Flunarizine influences metrazol-induced seizures in developing rats. Epilepsy Res. 1987;1:302–305. doi: 10.1016/0920-1211(87)90006-4. PubMed DOI
Kubová H, Mareš P. Time course of the anticonvulsant action of clonazepam in the developing rats. Arch Int Pharmacodyn. 1989;298:15–24. PubMed
Langmeier M, Fischer J, Mareš J. Ultrastructural changes in cortical synapses shortly after termination of a seizure during kindling. Physiol Bohemoslov. 1982;31:213–236. PubMed
Langmeier M, Mareš J, Fischer J. Number of synaptic vesicles in rat cortex immediately after cessation of the self-sustained afterdischarge during kindling. Epilepsia. 1983;24:616–627. doi: 10.1111/j.1528-1157.1983.tb03427.x. PubMed DOI
Pohl M, Mareš P. Flunarizine influences metrazol-induced seizures in developing rats. Epilepsy Res. 1987;1:302–305. doi: 10.1016/0920-1211(87)90006-4. PubMed DOI
Pohl M, Mareš P. Localisation of the origin of self-sustained afterdischarges (SSADs) in the rat: the serrated wave (SerW) type of SSAD. Physiol Bohemoslov. 1990;39:335–342. PubMed
Pohl M, Mareš P, Langmeier M. Localization of the origin of self-sustained after-discharges (SSADs) in the rat. I. The spike-and-wave (S+W) type of SSAD. Epilepsia. 1986;27:516–522. doi: 10.1111/j.1528-1157.1986.tb03577.x. PubMed DOI
Velíšková J, Velíšek L, Mareš P. Epileptic phenomena produced by kainic acid in laboratory rats during ontogenesis. Physiol Bohemoslov. 1988;37:395–405. PubMed
Velíšek L, Kusá R, Kulovaná M, Mareš P. Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis: 1. The effects of 2-amino-7-phosphonoheptanoate. Life Sci. 1990;46:1349–1357. doi: 10.1016/0024-3205(90)90334-N. PubMed DOI
Velíšek L, Verešová S, Pobišová H, Mareš P. Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis. 2. The effects of MK-801. Psychopharmacology. 1991;14:510–514. doi: 10.1007/BF02245658. PubMed DOI
Velíšek L, Kubová H, Mareš P, Vachová D. Kainate/AMPA receptor antagonists are anticonvulsant against the tonic hindlimb component of pentylenetetrazol-induced seizures in developing rats. Pharmacol Biochem Behav. 1995;51:153–158. doi: 10.1016/0091-3057(94)00329-H. PubMed DOI
Velíšek L, Roztočilová L, Kusá R, Mareš P. Excitatory amino-acid antagonists and pentylenetetrazol-induced seizures during ontogenesis: III. The action of kynuretic acid and glutamic acid diethylester. Brain Res Bull. 1995;38:525–529. doi: 10.1016/0361-9230(95)02019-3. PubMed DOI
Velíšek L, Vachová D, Mareš P. Excitatory amino acid antagonists and pentylenetetrazol-induced seizures during ontogenesis. IV. Effect of CGP 39551. Pharmacol Biochem Behav. 1997;56:493–498. doi: 10.1016/S0091-3057(96)00245-6. PubMed DOI
Mareš P, Velíšek L. N-Methyl-D aspartate (NMDA)-induced seizures in developing rats. Dev Brain Res. 1992;65:185–189. doi: 10.1016/0165-3806(92)90178-Y. PubMed DOI
Kubová H, Mareš P. Anticonvulsant effects of phenobarbital and primidone during ontogenesis in rats. Epilepsy Res. 1991;10:148–155. doi: 10.1016/0920-1211(91)90007-3. PubMed DOI
Kubová H, Mareš P. The effect of ontogenetic development on the anticonvulsant activity of midazolam. Life Sci. 1992;50:1665–1672. doi: 10.1016/0024-3205(92)90421-K. PubMed DOI
Kubová H, Mareš P. Anticonvulsant action of oxcarbazepine, hydroxycarbamazepine and carbamazepine against metrazol-induced motor seizures in developing rats. Epilepsia. 1993;34:188–192. doi: 10.1111/j.1528-1157.1993.tb02397.x. PubMed DOI
Kubová H, Rathouská J, Mareš P. Anticonvulsant effects of bretazenil (Ro 16–6028) during ontogenesis. Epilepsia. 1993;34:1130–1134. doi: 10.1111/j.1528-1157.1993.tb02145.x. PubMed DOI
Kubová H, Mareš P. Effects of MK-801 (Dizocilpine) and ketamine on strychnine-induced convulsions in rats: Comparison with benzodiazepines and standard anticonvulsants. Physiol Res. 1994;43:313–320. PubMed
Kubová H, Folbergrová J, Mareš P. Seizures induced by homocysteine in rats during ontogenesis. Epilepsia. 1995;36:750–756. doi: 10.1111/j.1528-1157.1995.tb01611.x. PubMed DOI
Kubová H, Lanštiaková M, Mocková M, Mareš P, Vorlíček J. Pharmacology of cortical epileptic afterdischarges in rats. Epilepsia. 1996;37:336–341. doi: 10.1111/j.1528-1157.1996.tb00569.x. PubMed DOI
Kubová H, Világi I, Mikulecká A, Mareš P. NonNMDA antagonist GYKI 52466 suppresses cortical afterdischarges in immature rats. Eur J Pharmacol. 1997;333:17–26. doi: 10.1016/S0014-2999(97)01119-9. PubMed DOI
Kubová H, Haugvicová R, Mareš P. Effects of NNC 711, a GABA uptake inhibitor, on pentylenetetrazol-induced seizures in developing and adult rats. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:334–341. doi: 10.1007/PL00005262. PubMed DOI
Kubová H, Mikulecká A, Haugvicová R, Mareš P. The benzodiazepine receptor partial agonist Ro 19–8022 suppresses generalized seizures without impairing motor functions in developing rats. Naunyn Schmiedebergs Arch Pharmacol. 1999;360:565–574. doi: 10.1007/s002109900126. PubMed DOI
Druga R, Kubová H, Mareš P. Degenerative neuronal changes in the rat thalamus induced by status epilepticus at different developmental stages. Epilepsy Res. 2005;63:43–65. doi: 10.1016/j.eplepsyres.2004.11.001. PubMed DOI
Druga R, Mareš P, Kubová H. Time course of neuronal damage in the hippocampus following lithium-pilocarpine status epilepticus in 12-day-old rats. Brain Res. 2010;1355:174–179. doi: 10.1016/j.brainres.2010.07.072. PubMed DOI
Mikulecká A, Mareš P. NMDA receptor antagonists impair motor performance in immature rats. Psychopharmacology. 2002;162:364–372. doi: 10.1007/s00213-002-1122-2. PubMed DOI
Mikulecká A, Kubová H, Mareš P. Lamotrigine does not impair motor performance and spontaneous behavior in developing rats. Epilepsy Behav. 2004;5:464–471. doi: 10.1016/j.yebeh.2004.04.013. PubMed DOI
Mareš P, Mikulecká A. MPEP, an antagonist of metabotropic glutamate receptors, exhibits anticonvulsant action in immature rats without a serious impairment of motor performance. Epilepsy Res. 2004;60:17–26. doi: 10.1016/j.eplepsyres.2004.04.008. PubMed DOI
Mikulecká A, Mareš P. Postictal behavior after two types of cortical epileptic afterdischarges in rats. Epilepsy Behav. 2007;10:213–218. doi: 10.1016/j.yebeh.2006.11.015. PubMed DOI
Mareš P, Mikulecká A. Different effects of two NMDA receptor antagonists on seizures, spontaneous behavior and motor performance in immature rats. Epilepsy Behav. 2009;14:32–39. doi: 10.1016/j.yebeh.2008.08.013. PubMed DOI
Mikulecká A, Mareš P, Kubová H. Rebound increase of seizure susceptibility but not isolation calls after single administration of clonazepam and Ro 19–8022 in infant rats. Epilepsy Behav. 2011;20:12–19. doi: 10.1016/j.yebeh.2010.10.021. PubMed DOI
Mikulecká A, Šubrt M, Pařízková M, Mareš P, Kubová H. Consequences of early postnatal benzodiazepines exposure in rats II. Social behavior. Frontiers Behav Sci. 2014;8:169. doi: 10.3389/fnbeh.2014.00169. PubMed DOI PMC
Mikulecká A, Druga R, Stuchlík A, Mareš P, Kubová H. Comorbidities of early-onset temporal epilepsy: Cognitive, social, emotional, and morphologic dimensions. Exp Neurol. 2019;320:113005. doi: 10.1016/j.expneurol.2019.113005. PubMed DOI
Mareš P, Kozlová L, Mikulecká A, Kubová H. The GluN2B-selective antagonist Ro 25–6981 is effective against PTZ-induced seizures and safe for further development in infantile rats. Pharmaceutics. 2021;13:1482. doi: 10.3390/pharmaceutics13091482. PubMed DOI PMC
Kubová H, Mikulecká A, Mareš P. The outcome of early life status epilepticus - lessons from laboratory animals. Epilepsia Open. 2023;8(Suppl 1):S90–S109. doi: 10.1002/epi4.12664. PubMed DOI PMC
Folbergrová J. Cerebral energy state of neonatal rats during seizures induced by homocysteine. Physiol Res. 1993;42:155–160. PubMed
Folbergrová J, He QP, Li PA, Smith ML, Siesjö BK. The effect of alpha-phenyl-N-tert-butyl nitrone on bioenergetic state in substantia nigra following flurothyl-induced status epilepticus in rats. Neurosci Lett. 1999;266:121–124. doi: 10.1016/S0304-3940(99)00279-7. PubMed DOI
Folbergrová J, Ješina P, Drahota Z, Lisý V, Haugvicová R, Vojtíšková A, Houštĕk J. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol. 2007;204:597–609. doi: 10.1016/j.expneurol.2006.12.010. PubMed DOI
Folbergrová J, Ješina P, Haugvicová R, Lisý V, Houštěk J. Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid. Neurochem Int. 2010;56:394–403. doi: 10.1016/j.neuint.2009.11.011. PubMed DOI
Folbergrová J, Kunz WS. Mitochondrial dysfunction in epilepsy. Mitochondrion. 2012;12:35–40. doi: 10.1016/j.mito.2011.04.004. PubMed DOI
Folbergrová J, Ješina P, Nůsková H, Houštěk J. Antioxidant enzymes in cerebral cortex of immature rats following experimentally-induced seizures: upregulation of mitochondrial MnSOD (SOD2) Int J Dev Neurosci. 2013;31:123–130. doi: 10.1016/j.ijdevneu.2012.11.011. PubMed DOI
Mareš P, Folbergrová J, Haugvicová R, Kubová H. Do stereoisomers of homocysteic acid exhibit different convulsant action in immature rats? Physiol Res. 2019;63(Suppl 3):S361–S366. doi: 10.33549/physiolres.934347. PubMed DOI
Mareš P, Folbergrová J, Langmeier M, Haugvicová R, Kubová H. Convulsant action of D,L-homocysteic acid and its stereoisomers in immature rats. Epilepsia. 1997;38:767–776. doi: 10.1111/j.1528-1157.1997.tb01463.x. PubMed DOI
Mareš P, Haugvicová R. Anticonvulsant action of gabapentin during postnatal development in rats. Epilepsia. 1997;38:893–896. doi: 10.1111/j.1528-1157.1997.tb01254.x. PubMed DOI
Haugvicová R, Kubová H, Mareš P. Qualitative changes of anticonvulsant action of felbamate during development in rats. Brain Dev. 1998;20:222–226. doi: 10.1016/S0387-7604(98)00030-8. PubMed DOI
Haugvicová R, Kubová H, Mareš P. Antipentylenetetrazol action of clobazam in developing rats. Physiol Res. 1999;48:501–507. PubMed
Haugvicová R, Škutová M, Kubová H, Suchomelová L, Mareš P. Two different anticonvulsant actions of tiagabine in developing rats. Epilepsia. 2000;41:1375–1381. doi: 10.1111/j.1528-1157.2000.tb00112.x. PubMed DOI
Mareš P, Haugvicová R, Kubová H. Unequal development of thresholds for various phenomena induced by cortical stimulation in rats. Epilepsy Res. 2002;49:35–43. doi: 10.1016/S0920-1211(02)00009-8. PubMed DOI
Haugvicová R, Bílková E, Kubová H, Mareš P. Effects of classical antiepileptics on thresholds for phenomena induced by cortical stimulation in rats. J Pharm Pharmacol. 2002;54:1011–1015. doi: 10.1211/002235702760089153. PubMed DOI
Mareš P, Mikulecká A, Haugvicová R, Kasal A. Anticonvulsant action of allopregnanolone in immature rats. Epilepsy Res. 2006;70:110–117. doi: 10.1016/j.eplepsyres.2006.03.009. PubMed DOI
Druga R, Salaj M, Barinka F, Edelstein L, Kubová H. Calretinin immunoreactivity in the claustrum of the rat. Front Neuroanat. 2015;8:160. doi: 10.3389/fnana.2014.00160. PubMed DOI PMC
Salaj M, Barinka F, Kubová H, Druga R. Differences in expression of calcium binding proteins in the perirhinal and retrosplenial cortex of the rat. Physiol Res. 2021;70:273–285. doi: 10.33549/physiolres.934548. PubMed DOI PMC
Kubová H, Druga R, Lukasiuk K, Suchomelová L, Haugvicová R, Jirmanová I, Pitkänen A. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci. 2001;21:3593–3599. doi: 10.1523/JNEUROSCI.21-10-03593.2001. PubMed DOI PMC
Kubová H, Druga R, Haugvicová R, Suchomelová L, Pitkänen A. Dynamic changes of status epilepticus-induced neuronal degeneration in the mediodorsal nucleus of the thalamus during postnatal development of the rat. Epilepsia. 2002;43(Suppl 5):54–60. doi: 10.1046/j.1528-1157.43.s.5.36.x. PubMed DOI
Nairismägi J, Pitkänen A, Kettunen MI, Kauppinen RA, Kubova H. Status epilepticus in 12-day-old rats leads to temporal lobe neurodegeneration and volume reduction: a histologic and MRI study. Epilepsia. 2006;47:479–488. doi: 10.1111/j.1528-1167.2006.00455.x. PubMed DOI
Kršek P, Mikulecká A, Druga R, Hliňák Z, Kubová H, Mareš P. An animal model of nonconvulsive status epilepticus: a contribution to clinical controversies. Epilepsia. 2001;42:171–180. doi: 10.1046/j.1528-1157.2001.35799.x. PubMed DOI
Kršek P, Mikulecká A, Druga R, Kubová H, Hliňák Z, Suchomelová L, Mareš P. Long-term behavioral and morphological consequences of nonconvulsive status epilepticus in rats. Epilepsy Behav. 2004;5:180–191. doi: 10.1016/j.yebeh.2003.11.032. PubMed DOI
Suchomelova L, Baldwin RA, Kubova H, Thompson KW, Sankar R, Wasterlain CG. Treatment of experimental status epilepticus in immature rats: dissociation between anticonvulsant and antiepileptogenic effects. Pediatr Res. 2006;59:237–243. doi: 10.1203/01.pdr.0000196333.16608.30. PubMed DOI
Suchomelova L, Lopez-Meraz ML, Niquet J, Kubova H, Wasterlain CG. Hyperthermia aggravates status epilepticus-induced epileptogenesis and neuronal loss in immature rats. Neuroscience. 2015;305:209–224. doi: 10.1016/j.neuroscience.2015.08.006. PubMed DOI
Jefferys JGR, Jiruska P, de Curtis M, Avoli M. Limbic network synchronization and temporal lobe epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s Basic Mechanisms of the Epilepsies [Internet] 4th edition. Bethesda (MD): National Center for Biotechnology Information (US); 2012. PubMed DOI
Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol. 2013;591:787–797. doi: 10.1113/jphysiol.2012.239590. PubMed DOI PMC
Zijlmans M, Jiruska P, Zelmann R, Leijten FS, Jefferys JG, Gotman J. High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol. 2012;71:169–178. doi: 10.1002/ana.22548. PubMed DOI PMC
Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol. 2013;591:787–797. doi: 10.1113/jphysiol.2012.239590. PubMed DOI PMC
Janca R, Krsek P, Jezdik P, Cmejla R, Tomasek M, Komarek V, Marusic P, Jiruska P. the sub-regional functional organization of neocortical irritative epileptic networks in pediatric epilepsy. Front Neurol. 2018;9:184. doi: 10.3389/fneur.2018.00184. PubMed DOI PMC
Chang WC, Kudlacek J, Hlinka J, Chvojka J, Hadrava M, Kumpost V, Powell AD, et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat Neurosci. 2018;21:1742–1752. doi: 10.1038/s41593-018-0278-y. PubMed DOI
Dulla CG, Janigro D, Jiruska P, Raimondo JV, Ikeda A, Lin CK, Goodkin HP, et al. How do we use in vitro models to understand epileptiform and ictal activity? A report of the TASK1-WG4 group of the ILAE/AES Joint Translational Task Force. Epilepsia Open. 2018;3:460–473. doi: 10.1002/epi4.12277. PubMed DOI PMC
Janca R, Krsek P, Jezdik P, Cmejla R, Tomasek M, Komarek V, Marusic P, Jiruska P. Corrigendum: The sub-regional functional organization of neocortical irritative epileptic networks in pediatric epilepsy. Front Neurol. 2019;10:631. doi: 10.3389/fneur.2019.00631. PubMed DOI PMC
Kann O, Kovács R, Njunting M, Behrens CJ, Otáhal J, Lehmann TN, Gabriel S, Heinemann U. Changes in cytochrome oxidase in the piriform cortex after status epilepticus in adult rats. Metabolic dysfunction during neuronal activation in the ex vivo hippocampus from chronic epileptic rats and humans. Brain. 2005;128:2396–2407. doi: 10.1093/brain/awh568. PubMed DOI
Dugladze T, Vida I, Tort AB, Gross A, Otahal J, Heinemann U, Kopell NJ, Gloveli T. Impaired hippocampal rhythmogenesis in a mouse model of mesial temporal lobe epilepsy. Proc Natl Acad Sci U S A. 2007;104:17530–17535. doi: 10.1073/pnas.0708301104. PubMed DOI PMC
Tolner EA, Hochman DW, Hassinen P, Otáhal J, Gaily E, Haglund MM, Kubová H, et al. Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia. 2011;52:104–114. doi: 10.1111/j.1528-1167.2010.02731.x. PubMed DOI PMC
Beamer E, Otahal J, Sills GJ, Thippeswamy T. N(w)-propyl-L-arginine (L-NPA) reduces status epilepticus and early epileptogenic events in a mouse model of epilepsy: behavioural, EEG and immunohistochemical analyses. Eur J Neurosci. 2012;36:3194–3203. doi: 10.1111/j.1460-9568.2012.08234.x. PubMed DOI
Kudlacek J, Chvojka J, Posusta A, Kovacova L, Hong SB, Weiss S, Volna K, et al. Lacosamide and levetiracetam have no effect on sharp-wave ripple rate. Front Neurol. 2017;8:687. doi: 10.3389/fneur.2017.00687. PubMed DOI PMC
Kudlacek J, Chvojka J, Kumpost V, Hermanovska B, Posusta A, Jefferys JGR, Maturana MI, et al. Long-term seizure dynamics are determined by the nature of seizures and the mutual interactions between them. Neurobiol Dis. 2021;154:105347. doi: 10.1016/j.nbd.2021.105347. PubMed DOI
Daněk J, Danačíková Š, Kala D, Svoboda J, Kapoor S, Pošusta A, Folbergrová J, et al. Sulforaphane ameliorates metabolic changes associated with status epilepticus in immature rats. Front Cell Neurosci. 2022;16:855161. doi: 10.3389/fncel.2022.855161. PubMed DOI PMC
Folbergrová J, Otáhal J, Druga R. Brain superoxide anion formation in immature rats during seizures: protection by selected compounds. Exp Neurol. 2012;233:421–429. doi: 10.1016/j.expneurol.2011.11.009. PubMed DOI
Otáhal J, Folbergrová J, Kovacs R, Kunz WS, Maggio N. Epileptic focus and alteration of metabolism. Int Rev Neurobiol. 2014;114:209–243. doi: 10.1016/B978-0-12-418693-4.00009-1. PubMed DOI
Folbergrová J, Ješina P, Kubová H, Otáhal J. Effect of resveratrol on oxidative stress and mitochondrial dysfunction in immature brain during epileptogenesis. Mol Neurobiol. 2018;55:7512–7522. doi: 10.1007/s12035-018-0924-0. PubMed DOI
Folbergrová J, Ješina P, Otáhal J. Treatment With resveratrol ameliorates mitochondrial dysfunction during the acute phase of status epilepticus in immature rats. Front Neurosci. 2021;15:634378. doi: 10.3389/fnins.2021.634378. PubMed DOI PMC
Folbergrová J, Ješina P, Otáhal J. Protective effect of sulforaphane on oxidative stress and mitochondrial dysfunction associated with status epilepticus in immature rats. Mol Neurobiol. 2023;60:2024–2035. doi: 10.1007/s12035-022-03201-x. PubMed DOI PMC
Brožíčková C, Mikulecká A, Otáhal J. Effect of 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, on behavioral and physiological parameters. Physiol Res. 2014;63:637–648. doi: 10.33549/physiolres.932781. PubMed DOI
Brima T, Otáhal J, Mareš P. Increased susceptibility to pentetrazol-induced seizures in developing rats after cortical photothrombotic ischemic stroke at P7. Brain Res. 2013;1507:146–153. doi: 10.1016/j.brainres.2013.02.037. PubMed DOI
Lojková D, Mareš P. Anticonvulsant action of an antagonist of metabotropic glutamate receptors mGluR5 MPEP in immature rats. Neuropharmacology. 2005;49:219–229. doi: 10.1016/j.neuropharm.2005.04.020. PubMed DOI
Lojková D, Živanovič D, Mareš P. Different effects of nonNMDA and NMDA receptor antagonists (NBQX and dizocilpine) on cortical epileptic afterdischarges in rats. Brain Res. 2006;1124:167–175. doi: 10.1016/j.brainres.2006.09.072. PubMed DOI
Lojková-Janečková D, Ng J, Mareš P. Antagonists of group I metabotropic glutamate receptors and cortical afterdischarges in immature rats. Epilepsia. 2009;50:2123–2129. doi: 10.1111/j.1528-1167.2009.02091.x. PubMed DOI
Mátéffyová A, Otáhal J, Tsenov G, Mareš P, Kubová H. Intrahippocampal injection of endothelin-1 in immature rats results in neuronal death, development of epilepsy, and behavioral abnormalities later in life. Eur J Neurosci. 2006;24:351–360. doi: 10.1111/j.1460-9568.2006.04910.x. PubMed DOI
Tsenov G, Mátéffyová A, Mareš P, Otáhal J, Kubová H. Intrahippocampal injection of endothelin-1, a new model of ischemia-induced seizures in immature rats. Epilepsia. 2007;48(Suppl 5):7–13. doi: 10.1111/j.1528-1167.2007.01282.x. PubMed DOI
Tsenov G, Kubová H, Mareš P. Changes of cortical epileptic afterdischarges after status epilepticus in immature rats. Epilepsy Res. 2008;78:178–185. doi: 10.1016/j.eplepsyres.2007.11.008. PubMed DOI
Tsenov G, Redkozubova O, Kubová H, Mareš P. Effects of lamotrigine on cortically-elicited phenomena in adult rats: differences between acute application and late consequences of early postnatal administration. Brain Res. 2009;1258:65–70. doi: 10.1016/j.brainres.2008.12.054. PubMed DOI
Tsenov G, Kubová H, Mareš P. Which component of treatment is important for changes of cortical epileptic afterdischarges after status epilepticus in immature rats? Neurosci Lett. 2017;644:1–4. doi: 10.1016/j.neulet.2017.02.043. PubMed DOI
Mareš P, Stehlíková M. Anticonvulsant doses of ganaxolone do not compromise motor performance in immature rats. Neurosci Lett. 2010;469:396–399. doi: 10.1016/j.neulet.2009.12.037. PubMed DOI
Tchekalarova J, Kubová H, Mareš P. Postnatal caffeine exposure: effects on motor skills and locomotor activity during ontogenesis. Behav Brain Res. 2005;160:99–106. doi: 10.1016/j.bbr.2004.11.018. PubMed DOI
Tchekalarova J, Kubová H, Mareš P. Biphasic effect of chronic postnatal caffeine treatment on cortical epileptic afterdischarges during ontogeny in rats. Brain Res. 2006;1082:43–49. doi: 10.1016/j.brainres.2006.01.067. PubMed DOI
Tchekalarova J, Kubová H, Mareš P. Effects of postnatal caffeine exposure on seizure susceptibility in developing rats. Brain Res. 2007;1150:32–39. doi: 10.1016/j.brainres.2006.10.035. PubMed DOI
Tchekalarova J, Kubová H, Mareš P. Postnatal caffeine treatment affects differently two pentylenetetrazol seizure models in rats. Seizure. 2009;18:463–469. doi: 10.1016/j.seizure.2009.04.002. PubMed DOI
Tchekalarova J, Kubová H, Mareš P. Effects of early postnatal caffeine exposure on seizure susceptibility of rats are age- and model-dependent. Epilepsy Res. 2010;88:231–238. doi: 10.1016/j.eplepsyres.2009.11.015. PubMed DOI
Tchekalarova J, Kubová H, Mareš P. Postnatal period of caffeine treatment and time of testing modulate the effect of acute caffeine on cortical epileptic afterdischarges in rats. Brain Res. 2010;1356:121–129. doi: 10.1016/j.brainres.2010.07.107. PubMed DOI
Tchekalarova J, Kubová H, Mareš P. Transient changes of cortical interhemispheric responses after repeated caffeine administration in immature rats. Physiol Res. 2011;60:961–969. doi: 10.33549/physiolres.932147. PubMed DOI
Tchekalarova J, Kubová H, Mareš P. Different effects of postnatal caffeine treatment on two pentylentetrazol-induced seizure models persist into adulthood. Pharmacol Rep. 2013;65:847–853. doi: 10.1016/S1734-1140(13)71065-X. PubMed DOI
Tchekalarova J, Kubová H, Mareš P. Early caffeine exposure: transient and long-term consequences on brain excitability. Brain Res Bull. 2014;104:27–35. doi: 10.1016/j.brainresbull.2014.04.001. PubMed DOI
Mareš P. A1 not A2A adenosine receptors play a role in cortical epileptic afterdischarges in immature rats. J Neural Transm. 2014;121:1329–1336. doi: 10.1007/s00702-014-1234-y. PubMed DOI
Fábera P, Pařizková M, Uttl L, Vondráková K, Kubová H, Tsenov G, Mareš P. Adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine and hippocampal excitability during brain development in rats. Front Pharmacol. 2019;10:656. doi: 10.3389/fphar.2019.00656. PubMed DOI PMC
Fábera P, Uttl L, Kubová H, Tsenov G, Mareš P. Adenosine kinase regulates hippocampal excitability after LiCl-pilocarpine SE in immature rats. Int J Mol Sci. 2022;23:2510. doi: 10.3390/ijms23052510. PubMed DOI PMC
Mareš P, Kubová H. GABA-B, not GABA-A receptors play a role in cortical postictal refractoriness. Neuropharmacology. 2015;88:99–102. doi: 10.1016/j.neuropharm.2014.09.007. PubMed DOI
Mareš P, Kubová H. Developmental patterns of postictal refractoriness and potentiation akin to cortical stimulation. Epilepsia. 2015;56:e10–e14. doi: 10.1111/epi.12870. PubMed DOI
Mareš P, Kubová H. Does status epilepticus induced at early postnatal period change excitability after cortical epileptic afterdischarges? Epilepsia. 2016;57:e183–e186. doi: 10.1111/epi.13438. PubMed DOI
Mareš P. Participation of GABAB receptors in cortical postictal excitability in immature rats. Eur J Pharmacol. 2018;818:26–29. doi: 10.1016/j.ejphar.2017.10.022. PubMed DOI
Bencurova P, Baloun J, Hynst J, Oppelt J, Kubova H, Pospisilova S, Brazdil M. Dynamic miRNA changes during the process of epileptogenesis in an infantile and adult-onset model. Sci Rep. 2021;11:9649. doi: 10.1038/s41598-021-89084-9. PubMed DOI PMC
Bencurova P, Laakso H, Salo RA, Paasonen E, Manninen E, Paasonen J, Michaeli S, et al. Infantile status epilepticus disrupts myelin development. Neurobiol Dis. 2022;162:105566. doi: 10.1016/j.nbd.2021.105566. PubMed DOI PMC
Mareš P, Kudová E, Valeš K, Kubová H. Three neurosteroids as well as GABAergic drugs do not convert immediate postictal potentiation to depression in immature rats. Pharmacol Rep. 2020;72:1573–1578. doi: 10.1007/s43440-020-00113-2. PubMed DOI
Kudová E, Mareš P, Hill M, Vondráková K, Tsenov G, Chodounská H, Kubová H, Valeš K. The neuroactive steroid pregnanolone glutamate: Anticonvulsant effect, metabolites and its effect on neurosteroid levels in developing rat brains. Pharmaceuticals (Basel) 2021;15:49. doi: 10.3390/ph15010049. PubMed DOI PMC
Chvíla S, Kubová H, Mareš P, Kudová E, Štěpánek F. A zuranolone nanocrystal formulation enables solubility-independent in vivo study of pentylenetetrazol-induced seizures in a rat model. RSC Pharm. 2024;1:37–46. doi: 10.1039/d3pm00043e. DOI