The Neuroactive Steroid Pregnanolone Glutamate: Anticonvulsant Effect, Metabolites and Its Effect on Neurosteroid Levels in Developing Rat Brains
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ERDF/ESF Project "PharmaBrain" No. CZ.02.1.01/0.0/0.0/16_025/0007444
European Regional Development Fund
grant RVO 61388963
Czech Academy of Sciences
Programs of Strategy AV21
Czech Academy of Sciences
18-09296S
Czech Academy of Sciences
NU20-04-00389
Internal Grant Agency of Czech Republic
PubMed
35056106
PubMed Central
PMC8780580
DOI
10.3390/ph15010049
PII: ph15010049
Knihovny.cz E-zdroje
- Klíčová slova
- GABA, NMDA, anticonvulsant, metabolomics, neurosteroids, zuranolone,
- Publikační typ
- časopisecké články MeSH
Pregnanolone glutamate (PA-G) is a neuroactive steroid that has been previously demonstrated to be a potent neuroprotective compound in several biological models in vivo. Our in vitro experiments identified PA-G as an inhibitor of N-methyl-D-aspartate receptors and a potentiator of γ-aminobutyric acid receptors (GABAARs). In this study, we addressed the hypothesis that combined GABAAR potentiation and NMDAR antagonism could afford a potent anticonvulsant effect. Our results demonstrated the strong age-related anticonvulsive effect of PA-G in a model of pentylenetetrazol-induced seizures. PA-G significantly decreased seizure severity in 12-day-old animals, but only after the highest dose in 25-day-old animals. Interestingly, the anticonvulsant effect of PA-G differed both qualitatively and quantitatively from that of zuranolone, an investigational neurosteroid acting as a potent positive allosteric modulator of GABAARs. Next, we identified 17-hydroxy-pregnanolone (17-OH-PA) as a major metabolite of PA-G in 12-day-old animals. Finally, the administration of PA-G demonstrated direct modulation of unexpected neurosteroid levels, namely pregnenolone and dehydroepiandrosterone sulfate. These results suggest that compound PA-G might be a pro-drug of 17-OH-PA, a neurosteroid with a promising neuroprotective effect with an unknown mechanism of action that may represent an attractive target for studying perinatal neural diseases.
Institute of Endocrinology Narodni 8 11694 Prague Czech Republic
Institute of Mental Health Topolova 748 25067 Klecany Czech Republic
Zobrazit více v PubMed
Witt K.A., Sandoval K.E. Steroids and the blood-brain barrier: Therapeutic implications. Adv. Pharmacol. 2014;71:361–390. doi: 10.1016/bs.apha.2014.06.018. PubMed DOI
Grube M., Hagen P., Jedlitschky G. Neurosteroid Transport in the Brain: Role of ABC and SLC Transporters. Front. Pharmacol. 2018;9:354. doi: 10.3389/fphar.2018.00354. PubMed DOI PMC
Schafer A.M., Meyer Zu Schwabedissen H.E., Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain: Physiological and Pharmacological Implications. Pharmaceutics. 2021;13:834. doi: 10.3390/pharmaceutics13060834. PubMed DOI PMC
Kudova E. Rapid effects of neurosteroids on neuronal plasticity and their physiological and pathological implications. Neurosci. Lett. 2021;750:135771. doi: 10.1016/j.neulet.2021.135771. PubMed DOI
Brown A.R., Mitchell S.J., Peden D.R., Herd M.B., Seifi M., Swinny J.D., Belelli D., Lambert J.J. During postnatal development endogenous neurosteroids influence GABA-ergic neurotransmission of mouse cortical neurons. Neuropharmacology. 2016;103:163–173. doi: 10.1016/j.neuropharm.2015.11.019. PubMed DOI PMC
Sierra A., Lavaque E., Perez-Martin M., Azcoitia I., Hales D.B., Garcia-Segura L.M. Steroidogenic acute regulatory protein in the rat brain: Cellular distribution, developmental regulation and overexpression after injury. Eur. J. Neurosci. 2003;18:1458–1467. doi: 10.1046/j.1460-9568.2003.02872.x. PubMed DOI
MacKenzie G., Maguire J. Neurosteroids and GABAergic signaling in health and disease. Biomol. Concepts. 2013;4:29–42. doi: 10.1515/bmc-2012-0033. PubMed DOI PMC
Grobin A.C., Morrow A.L. 3α-hydroxy-5α-pregnan-20-one levels and GABAA receptor-mediated 36Cl− flux across development in rat cerebral cortex. Brain Res. Dev. Brain Res. 2001;131:31–39. doi: 10.1016/S0165-3806(01)00242-5. PubMed DOI
Brown A.R., Herd M.B., Belelli D., Lambert J.J. Developmentally regulated neurosteroid synthesis enhances GABAergic neurotransmission in mouse thalamocortical neurones. J. Physiol. 2015;593:267–284. doi: 10.1113/jphysiol.2014.280263. PubMed DOI PMC
Rosenthal E.S., Claassen J., Wainwright M.S., Husain A.M., Vaitkevicius H., Raines S., Hoffmann E., Colquhoun H., Doherty J.J., Kanes S.J. Brexanolone as adjunctive therapy in super-refractory status epilepticus. Ann. Neurol. 2017;82:342–352. doi: 10.1002/ana.25008. PubMed DOI PMC
Levesque M., Biagini G., Avoli M. Neurosteroids and Focal Epileptic Disorders. Int. J. Mol. Sci. 2020;21:9391. doi: 10.3390/ijms21249391. PubMed DOI PMC
Iwata S., Wakita M., Shin M.C., Fukuda A., Akaike N. Modulation of allopregnanolone on excitatory transmitters release from single glutamatergic terminal. Brain Res. Bull. 2013;93:39–46. doi: 10.1016/j.brainresbull.2012.11.002. PubMed DOI
Park-Chung M., Malayev A., Purdy R.H., Gibbs T.T., Farb D.H. Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res. 1999;830:72–87. doi: 10.1016/S0006-8993(99)01381-5. PubMed DOI
Park-Chung M., Wu F.S., Purdy R.H., Malayev A.A., Gibbs T.T., Farb D.H. Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Mol. Pharmacol. 1997;52:1113–1123. doi: 10.1124/mol.52.6.1113. PubMed DOI
Weaver C.E., Land M.B., Purdy R.H., Richards K.G., Gibbs T.T., Farb D.H. Geometry and charge determine pharmacological effects of steroids on N-methyl-D-aspartate receptor-induced Ca2+ accumulation and cell death. J. Pharmacol. Exp. Ther. 2000;293:747–754. PubMed
Petrovic M., Sedlacek M., Horak M., Chodounska H., Vyklicky L., Jr. 20-oxo-5beta-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. J. Neurosci. 2005;25:8439–8450. doi: 10.1523/JNEUROSCI.1407-05.2005. PubMed DOI PMC
Ziolkowski L., Mordukhovich I., Chen D.M., Chisari M., Shu H.J., Lambert P.M., Qian M., Zorumski C.F., Covey D.F., Mennerick S. A neuroactive steroid with a therapeutically interesting constellation of actions at GABAA and NMDA receptors. Neuropharmacology. 2021;183:108358. doi: 10.1016/j.neuropharm.2020.108358. PubMed DOI PMC
Kapur J. Role of NMDA receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open. 2018;3:165–168. doi: 10.1002/epi4.12270. PubMed DOI PMC
Hanada T. Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors. Biomolecules. 2020;10:464. doi: 10.3390/biom10030464. PubMed DOI PMC
Pohl M., Mares P. Effects of flunarizine on Metrazol-induced seizures in developing rats. Epilepsy Res. 1987;1:302–305. doi: 10.1016/0920-1211(87)90006-4. PubMed DOI
Holubova K., Chvojkova M., Hrcka Krausova B., Vyklicky V., Kudova E., Chodounska H., Vyklicky L., Vales K. Pitfalls of NMDA Receptor Modulation by Neuroactive Steroids. The Effect of Positive and Negative Modulation of NMDA Receptors in an Animal Model of Schizophrenia. Biomolecules. 2021;11:1026. doi: 10.3390/biom11071026. PubMed DOI PMC
Bukanova J.V., Solntseva E.I., Kolbaev S.N., Kudova E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3alpha5beta-pregnanolone derivatives. Neurochem. Int. 2018;118:145–151. doi: 10.1016/j.neuint.2018.06.002. PubMed DOI
Martinez Botella G., Salituro F.G., Harrison B.L., Beresis R.T., Bai Z., Blanco M.J., Belfort G.M., Dai J., Loya C.M., Ackley M.A., et al. Neuroactive Steroids. 2. 3alpha-Hydroxy-3beta-methyl-21-(4-cyano-1H-pyrazol-1′-yl)-19-nor-5beta-pregnan-20 -one (SAGE-217): A Clinical Next Generation Neuroactive Steroid Positive Allosteric Modulator of the (gamma-Aminobutyric Acid)A Receptor. J. Med. Chem. 2017;60:7810–7819. doi: 10.1021/acs.jmedchem.7b00846. PubMed DOI
Rambousek L., Bubenikova-Valesova V., Kacer P., Syslova K., Kenney J., Holubova K., Najmanova V., Zach P., Svoboda J., Stuchlik A., et al. Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-D-aspartate receptor 3α5β-pregnanolone glutamate. Neuropharmacology. 2011;61:61–68. doi: 10.1016/j.neuropharm.2011.02.018. PubMed DOI
Borovska J., Vyklicky V., Stastna E., Kapras V., Slavikova B., Horak M., Chodounska H., Vyklicky L., Jr. Access of inhibitory neurosteroids to the NMDA receptor. Br. J. Pharmacol. 2012;166:1069–1083. doi: 10.1111/j.1476-5381.2011.01816.x. PubMed DOI PMC
Kudova E., Chodounska H., Slavikova B., Budesinsky M., Nekardova M., Vyklicky V., Krausova B., Svehla P., Vyklicky L. A New Class of Potent N-Methyl-D-Aspartate Receptor Inhibitors: Sulfated Neuroactive Steroids with Lipophilic D-Ring Modifications. J. Med. Chem. 2015;58:5950–5966. doi: 10.1021/acs.jmedchem.5b00570. PubMed DOI
Holubova K., Nekovarova T., Pistovcakova J., Sulcova A., Stuchlik A., Vales K. Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models. Front. Behav. Neurosci. 2014;8:130. doi: 10.3389/fnbeh.2014.00130. PubMed DOI PMC
Kleteckova L., Tsenov G., Kubova H., Stuchlik A., Vales K. Neuroprotective effect of the 3alpha5beta-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci. Lett. 2014;564:11–15. doi: 10.1016/j.neulet.2014.01.057. PubMed DOI
Soldin O.P., Guo T., Weiderpass E., Tractenberg R.E., Hilakivi-Clarke L., Soldin S.J. Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Fertil. Steril. 2005;84:701–710. doi: 10.1016/j.fertnstert.2005.02.045. PubMed DOI PMC
Hill M., Cibula D., Havlikova H., Kancheva L., Fait T., Kancheva R., Parizek A., Starka L. Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J. Steroid Biochem. Mol. Biol. 2007;105:166–175. doi: 10.1016/j.jsbmb.2006.10.010. PubMed DOI
Hirst J.J., Yawno T., Nguyen P., Walker D.W. Stress in pregnancy activates neurosteroid production in the fetal brain. Neuroendocrinology. 2006;84:264–274. doi: 10.1159/000097990. PubMed DOI
Hirst J.J., Palliser H.K., Yates D.M., Yawno T., Walker D.W. Neurosteroids in the fetus and neonate: Potential protective role in compromised pregnancies. Neurochem. Int. 2008;52:602–610. doi: 10.1016/j.neuint.2007.07.018. PubMed DOI
Liang L., Rasmussen M.H., Piening B., Shen X., Chen S., Rost H., Snyder J.K., Tibshirani R., Skotte L., Lee N.C., et al. Metabolic Dynamics and Prediction of Gestational Age and Time to Delivery in Pregnant Women. Cell. 2020;181:1680–1692.e15. doi: 10.1016/j.cell.2020.05.002. PubMed DOI PMC
Hirst J.J., Cumberland A.L., Shaw J.C., Bennett G.A., Kelleher M.A., Walker D.W., Palliser H.K. Loss of neurosteroid-mediated protection following stress during fetal life. J. Steroid Biochem. Mol. Biol. 2016;160:181–188. doi: 10.1016/j.jsbmb.2015.09.012. PubMed DOI
Westcott K.T., Hirst J.J., Ciurej I., Walker D.W., Wlodek M.E. Brain allopregnanolone in the fetal and postnatal rat in response to uteroplacental insufficiency. Neuroendocrinology. 2008;88:287–292. doi: 10.1159/000139771. PubMed DOI
Brunton P.J., Russell J.A. Neuroendocrine control of maternal stress responses and fetal programming by stress in pregnancy. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2011;35:1178–1191. doi: 10.1016/j.pnpbp.2010.12.023. PubMed DOI
Howell K.B., Harvey A.S., Archer J.S. Epileptic encephalopathy: Use and misuse of a clinically and conceptually important concept. Epilepsia. 2016;57:343–347. doi: 10.1111/epi.13306. PubMed DOI
Capovilla G., Moshe S.L., Wolf P., Avanzini G. Epileptic encephalopathy as models of system epilepsy. Epilepsia. 2013;54((Suppl. 8)):34–37. doi: 10.1111/epi.12421. PubMed DOI
Katsnelson A., Buzsaki G., Swann J.W. Catastrophic childhood epilepsy: A recent convergence of basic and clinical neuroscience. Sci. Transl. Med. 2014;6:262ps13. doi: 10.1126/scitranslmed.3010531. PubMed DOI
Deligiannidis K.M., Meltzer-Brody S., Gunduz-Bruce H., Doherty J., Jonas J., Li S., Sankoh A.J., Silber C., Campbell A.D., Werneburg B., et al. Effect of Zuranolone vs Placebo in Postpartum Depression: A Randomized Clinical Trial. JAMA Psychiatry. 2021;78:951–959. doi: 10.1001/jamapsychiatry.2021.1559. PubMed DOI PMC
Blanco M.J., La D., Coughlin Q., Newman C.A., Griffin A.M., Harrison B.L., Salituro F.G. Breakthroughs in neuroactive steroid drug discovery. Bioorg. Med. Chem. Lett. 2018;28:61–70. doi: 10.1016/j.bmcl.2017.11.043. PubMed DOI
Claahsen-van der Grinten H.L., Stikkelbroeck N., Falhammar H., Reisch N. Management of endocrine disease: Gonadal dysfunction in congenital adrenal hyperplasia. Eur. J. Endocrinol. 2021;184:R85–R97. doi: 10.1530/EJE-20-1093. PubMed DOI
Holsboer F., Knorr D. Determination of urinary 17-hydroxypregnanolone by gas chromatography-mass spectrometry in patients with congenital adrenal hyperplasia. J. Steroid Biochem. 1977;8:1197–1199. doi: 10.1016/0022-4731(77)90074-7. PubMed DOI
Bacchus H. A method for measurement of total 17-OH, 21-methyl steroids in the urine and its application to clinical problems. Metabolism. 1967;16:153–161. doi: 10.1016/0026-0495(67)90108-4. PubMed DOI
Bell M., Varley H. The estimation of pregnanetriol and 17-hydroxypregnanolone in urine in congenital adrenal hyperplasia. Clin. Chim. Acta. 1960;5:396–405. doi: 10.1016/0009-8981(60)90145-5. PubMed DOI
Pillai G.V., Smith A.J., Hunt P.A., Simpson P.B. Multiple structural features of steroids mediate subtype-selective effects on human alpha4beta3delta GABAA receptors. Biochem. Pharmacol. 2004;68:819–831. doi: 10.1016/j.bcp.2004.05.013. PubMed DOI
Meletti S., Lucchi C., Monti G., Giovannini G., Bedin R., Trenti T., Rustichelli C., Biagini G. Low levels of progesterone and derivatives in cerebrospinal fluid of patients affected by status epilepticus. J. Neurochem. 2018;147:275–284. doi: 10.1111/jnc.14550. PubMed DOI
Lucchi C., Costa A.M., Rustichelli C., Biagini G. Allopregnanolone and Pregnanolone Are Reduced in the Hippocampus of Epileptic Rats, but Only Allopregnanolone Correlates with Seizure Frequency. Neuroendocrinology. 2021;111:536–541. doi: 10.1159/000509093. PubMed DOI
Lucchi C., Costa A.M., Senn L., Messina S., Rustichelli C., Biagini G. Augmentation of endogenous neurosteroid synthesis alters experimental status epilepticus dynamics. Epilepsia. 2020;61:e129–e134. doi: 10.1111/epi.16654. PubMed DOI
Jankovic S.M., Djesevic M., Jankovic S.V. Experimental GABA A Receptor Agonists and Allosteric Modulators for the Treatment of Focal Epilepsy. J. Exp. Pharmacol. 2021;13:235–244. doi: 10.2147/JEP.S242964. PubMed DOI PMC
Shafizadeh T.B., Halsted C.H. gamma-Glutamyl hydrolase, not glutamate carboxypeptidase II, hydrolyzes dietary folate in rat small intestine. J. Nutr. 2007;137:1149–1153. doi: 10.1093/jn/137.5.1149. PubMed DOI
Mukai H., Takata N., Ishii H.T., Tanabe N., Hojo Y., Furukawa A., Kimoto T., Kawato S. Hippocampal synthesis of estrogens and androgens which are paracrine modulators of synaptic plasticity: Synaptocrinology. Neuroscience. 2006;138:757–764. doi: 10.1016/j.neuroscience.2005.09.010. PubMed DOI
Dalla Valle L., Belvedere P., Simontacchi C., Colombo L. Extraglandular hormonal steroidogenesis in aged rats. J. Steroid Biochem. Mol. Biol. 1992;43:1095–1098. doi: 10.1016/0960-0760(92)90337-I. PubMed DOI
Dalla Valle L., Vianello S., Belvedere P., Colombo L. Rat cytochrome P450c17 gene transcription is initiated at different start sites in extraglandular and glandular tissues. J. Steroid Biochem. Mol. Biol. 2002;82:377–384. doi: 10.1016/S0960-0760(02)00219-4. PubMed DOI
Shin H.C., Kim H.R., Cho H.J., Yi H., Cho S.M., Lee D.G., Abd El-Aty A.M., Kim J.S., Sun D., Amidon G.L. Comparative gene expression of intestinal metabolizing enzymes. Biopharm. Drug Dispos. 2009;30:411–421. doi: 10.1002/bdd.675. PubMed DOI
Vianello S., Waterman M.R., Dalla Valle L., Colombo L. Developmentally regulated expression and activity of 17alpha-hydroxylase/C-17,20-lyase cytochrome P450 in rat liver. Endocrinology. 1997;138:3166–3174. doi: 10.1210/endo.138.8.5297. PubMed DOI
Emanuelsson I., Almokhtar M., Wikvall K., Gronbladh A., Nylander E., Svensson A.L., Fex Svenningsen A., Norlin M. Expression and regulation of CYP17A1 and 3beta-hydroxysteroid dehydrogenase in cells of the nervous system: Potential effects of vitamin D on brain steroidogenesis. Neurochem. Int. 2018;113:46–55. doi: 10.1016/j.neuint.2017.11.007. PubMed DOI
Missaghian E., Kempna P., Dick B., Hirsch A., Alikhani-Koupaei R., Jegou B., Mullis P.E., Frey B.M., Fluck C.E. Role of DNA methylation in the tissue-specific expression of the CYP17A1 gene for steroidogenesis in rodents. J. Endocrinol. 2009;202:99–109. doi: 10.1677/JOE-08-0353. PubMed DOI
Le Goascogne C., Sananes N., Gouezou M., Takemori S., Kominami S., Baulieu E.E., Robel P. Immunoreactive cytochrome P-450(17 alpha) in rat and guinea-pig gonads, adrenal glands and brain. J. Reprod. Fertil. 1991;93:609–622. doi: 10.1530/jrf.0.0930609. PubMed DOI
Miller W.L., Auchus R.J. The “backdoor pathway” of androgen synthesis in human male sexual development. PLoS Biol. 2019;17:e3000198. doi: 10.1371/journal.pbio.3000198. PubMed DOI PMC
Sze Y., Gill A.C., Brunton P.J. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J. Neuroendocrinol. 2018;30:e12644. doi: 10.1111/jne.12644. PubMed DOI PMC
Kancheva R., Hill M., Novak Z., Chrastina J., Kancheva L., Starka L. Neuroactive steroids in periphery and cerebrospinal fluid. Neuroscience. 2011;191:22–27. doi: 10.1016/j.neuroscience.2011.05.054. PubMed DOI
Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat. J. Neurochem. 2017;142:672–685. doi: 10.1111/jnc.14117. PubMed DOI PMC
Wang M.D., Wahlstrom G., Backstrom T. The regional brain distribution of the neurosteroids pregnenolone and pregnenolone sulfate following intravenous infusion. J. Steroid Biochem. Mol. Biol. 1997;62:299–306. doi: 10.1016/S0960-0760(97)00041-1. PubMed DOI
Penning T.M., Wangtrakuldee P., Auchus R.J. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocr. Rev. 2019;40:447–475. doi: 10.1210/er.2018-00089. PubMed DOI PMC
Eechaute W.P., Dhooge W.S., Gao C.Q., Calders P., Rubens R., Weyne J., Kaufman J.M. Progesterone-transforming enzyme activity in the hypothalamus of the male rat. J. Steroid Biochem. Mol. Biol. 1999;70:159–167. doi: 10.1016/S0960-0760(99)00106-5. PubMed DOI
Shimada K., Yago K. Studies on neurosteroids X. Determination of pregnenolone and dehydroepiandrosterone in rat brains using gas chromatography-mass spectrometry-mass spectrometry. J. Chromatogr. Sci. 2000;38:6–10. doi: 10.1093/chromsci/38.1.6. PubMed DOI
Liere P., Akwa Y., Weill-Engerer S., Eychenne B., Pianos A., Robel P., Sjovall J., Schumacher M., Baulieu E.E. Validation of an analytical procedure to measure trace amounts of neurosteroids in brain tissue by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 2000;739:301–312. doi: 10.1016/S0378-4347(99)00563-0. PubMed DOI
Baulieu E.E., Robel P., Schumacher M. Neurosteroids: Beginning of the story. Int. Rev. Neurobiol. 2001;46:1–32. doi: 10.1016/s0074-7742(01)46057-0. PubMed DOI
Liu S., Sjovall J., Griffiths W.J. Neurosteroids in rat brain: Extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry. Anal. Chem. 2003;75:5835–5846. doi: 10.1021/ac0346297. PubMed DOI
Verleye M., Akwa Y., Liere P., Ladurelle N., Pianos A., Eychenne B., Schumacher M., Gillardin J.M. The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacol. Biochem. Behav. 2005;82:712–720. doi: 10.1016/j.pbb.2005.11.013. PubMed DOI
Ebner M.J., Corol D.I., Havlikova H., Honour J.W., Fry J.P. Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology. 2006;147:179–190. doi: 10.1210/en.2005-1065. PubMed DOI
Mathur C., Prasad V.V., Raju V.S., Welch M., Lieberman S. Steroids and their conjugates in the mammalian brain. Proc. Natl. Acad. Sci. USA. 1993;90:85–88. doi: 10.1073/pnas.90.1.85. PubMed DOI PMC
Reddy D.S. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy. Front. Cell Neurosci. 2016;10:101. doi: 10.3389/fncel.2016.00101. PubMed DOI PMC
Conklin P., Heggeness F.W. Maturation of tempeature homeostasis in the rat. Am. J. Physiol. 1971;220:333–336. doi: 10.1152/ajplegacy.1971.220.2.333. PubMed DOI
Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. B. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI
Effect of Treatment on Steroidome in Women with Multiple Sclerosis
Epilepsy Research in the Institute of Physiology of the Czech Academy of Sciences in Prague