The Neuroactive Steroid Pregnanolone Glutamate: Anticonvulsant Effect, Metabolites and Its Effect on Neurosteroid Levels in Developing Rat Brains

. 2021 Dec 30 ; 15 (1) : . [epub] 20211230

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35056106

Grantová podpora
ERDF/ESF Project "PharmaBrain" No. CZ.02.1.01/0.0/0.0/16_025/0007444 European Regional Development Fund
grant RVO 61388963 Czech Academy of Sciences
Programs of Strategy AV21 Czech Academy of Sciences
18-09296S Czech Academy of Sciences
NU20-04-00389 Internal Grant Agency of Czech Republic

Pregnanolone glutamate (PA-G) is a neuroactive steroid that has been previously demonstrated to be a potent neuroprotective compound in several biological models in vivo. Our in vitro experiments identified PA-G as an inhibitor of N-methyl-D-aspartate receptors and a potentiator of γ-aminobutyric acid receptors (GABAARs). In this study, we addressed the hypothesis that combined GABAAR potentiation and NMDAR antagonism could afford a potent anticonvulsant effect. Our results demonstrated the strong age-related anticonvulsive effect of PA-G in a model of pentylenetetrazol-induced seizures. PA-G significantly decreased seizure severity in 12-day-old animals, but only after the highest dose in 25-day-old animals. Interestingly, the anticonvulsant effect of PA-G differed both qualitatively and quantitatively from that of zuranolone, an investigational neurosteroid acting as a potent positive allosteric modulator of GABAARs. Next, we identified 17-hydroxy-pregnanolone (17-OH-PA) as a major metabolite of PA-G in 12-day-old animals. Finally, the administration of PA-G demonstrated direct modulation of unexpected neurosteroid levels, namely pregnenolone and dehydroepiandrosterone sulfate. These results suggest that compound PA-G might be a pro-drug of 17-OH-PA, a neurosteroid with a promising neuroprotective effect with an unknown mechanism of action that may represent an attractive target for studying perinatal neural diseases.

Zobrazit více v PubMed

Witt K.A., Sandoval K.E. Steroids and the blood-brain barrier: Therapeutic implications. Adv. Pharmacol. 2014;71:361–390. doi: 10.1016/bs.apha.2014.06.018. PubMed DOI

Grube M., Hagen P., Jedlitschky G. Neurosteroid Transport in the Brain: Role of ABC and SLC Transporters. Front. Pharmacol. 2018;9:354. doi: 10.3389/fphar.2018.00354. PubMed DOI PMC

Schafer A.M., Meyer Zu Schwabedissen H.E., Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain: Physiological and Pharmacological Implications. Pharmaceutics. 2021;13:834. doi: 10.3390/pharmaceutics13060834. PubMed DOI PMC

Kudova E. Rapid effects of neurosteroids on neuronal plasticity and their physiological and pathological implications. Neurosci. Lett. 2021;750:135771. doi: 10.1016/j.neulet.2021.135771. PubMed DOI

Brown A.R., Mitchell S.J., Peden D.R., Herd M.B., Seifi M., Swinny J.D., Belelli D., Lambert J.J. During postnatal development endogenous neurosteroids influence GABA-ergic neurotransmission of mouse cortical neurons. Neuropharmacology. 2016;103:163–173. doi: 10.1016/j.neuropharm.2015.11.019. PubMed DOI PMC

Sierra A., Lavaque E., Perez-Martin M., Azcoitia I., Hales D.B., Garcia-Segura L.M. Steroidogenic acute regulatory protein in the rat brain: Cellular distribution, developmental regulation and overexpression after injury. Eur. J. Neurosci. 2003;18:1458–1467. doi: 10.1046/j.1460-9568.2003.02872.x. PubMed DOI

MacKenzie G., Maguire J. Neurosteroids and GABAergic signaling in health and disease. Biomol. Concepts. 2013;4:29–42. doi: 10.1515/bmc-2012-0033. PubMed DOI PMC

Grobin A.C., Morrow A.L. 3α-hydroxy-5α-pregnan-20-one levels and GABAA receptor-mediated 36Cl− flux across development in rat cerebral cortex. Brain Res. Dev. Brain Res. 2001;131:31–39. doi: 10.1016/S0165-3806(01)00242-5. PubMed DOI

Brown A.R., Herd M.B., Belelli D., Lambert J.J. Developmentally regulated neurosteroid synthesis enhances GABAergic neurotransmission in mouse thalamocortical neurones. J. Physiol. 2015;593:267–284. doi: 10.1113/jphysiol.2014.280263. PubMed DOI PMC

Rosenthal E.S., Claassen J., Wainwright M.S., Husain A.M., Vaitkevicius H., Raines S., Hoffmann E., Colquhoun H., Doherty J.J., Kanes S.J. Brexanolone as adjunctive therapy in super-refractory status epilepticus. Ann. Neurol. 2017;82:342–352. doi: 10.1002/ana.25008. PubMed DOI PMC

Levesque M., Biagini G., Avoli M. Neurosteroids and Focal Epileptic Disorders. Int. J. Mol. Sci. 2020;21:9391. doi: 10.3390/ijms21249391. PubMed DOI PMC

Iwata S., Wakita M., Shin M.C., Fukuda A., Akaike N. Modulation of allopregnanolone on excitatory transmitters release from single glutamatergic terminal. Brain Res. Bull. 2013;93:39–46. doi: 10.1016/j.brainresbull.2012.11.002. PubMed DOI

Park-Chung M., Malayev A., Purdy R.H., Gibbs T.T., Farb D.H. Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res. 1999;830:72–87. doi: 10.1016/S0006-8993(99)01381-5. PubMed DOI

Park-Chung M., Wu F.S., Purdy R.H., Malayev A.A., Gibbs T.T., Farb D.H. Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Mol. Pharmacol. 1997;52:1113–1123. doi: 10.1124/mol.52.6.1113. PubMed DOI

Weaver C.E., Land M.B., Purdy R.H., Richards K.G., Gibbs T.T., Farb D.H. Geometry and charge determine pharmacological effects of steroids on N-methyl-D-aspartate receptor-induced Ca2+ accumulation and cell death. J. Pharmacol. Exp. Ther. 2000;293:747–754. PubMed

Petrovic M., Sedlacek M., Horak M., Chodounska H., Vyklicky L., Jr. 20-oxo-5beta-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. J. Neurosci. 2005;25:8439–8450. doi: 10.1523/JNEUROSCI.1407-05.2005. PubMed DOI PMC

Ziolkowski L., Mordukhovich I., Chen D.M., Chisari M., Shu H.J., Lambert P.M., Qian M., Zorumski C.F., Covey D.F., Mennerick S. A neuroactive steroid with a therapeutically interesting constellation of actions at GABAA and NMDA receptors. Neuropharmacology. 2021;183:108358. doi: 10.1016/j.neuropharm.2020.108358. PubMed DOI PMC

Kapur J. Role of NMDA receptors in the pathophysiology and treatment of status epilepticus. Epilepsia Open. 2018;3:165–168. doi: 10.1002/epi4.12270. PubMed DOI PMC

Hanada T. Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors. Biomolecules. 2020;10:464. doi: 10.3390/biom10030464. PubMed DOI PMC

Pohl M., Mares P. Effects of flunarizine on Metrazol-induced seizures in developing rats. Epilepsy Res. 1987;1:302–305. doi: 10.1016/0920-1211(87)90006-4. PubMed DOI

Holubova K., Chvojkova M., Hrcka Krausova B., Vyklicky V., Kudova E., Chodounska H., Vyklicky L., Vales K. Pitfalls of NMDA Receptor Modulation by Neuroactive Steroids. The Effect of Positive and Negative Modulation of NMDA Receptors in an Animal Model of Schizophrenia. Biomolecules. 2021;11:1026. doi: 10.3390/biom11071026. PubMed DOI PMC

Bukanova J.V., Solntseva E.I., Kolbaev S.N., Kudova E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3alpha5beta-pregnanolone derivatives. Neurochem. Int. 2018;118:145–151. doi: 10.1016/j.neuint.2018.06.002. PubMed DOI

Martinez Botella G., Salituro F.G., Harrison B.L., Beresis R.T., Bai Z., Blanco M.J., Belfort G.M., Dai J., Loya C.M., Ackley M.A., et al. Neuroactive Steroids. 2. 3alpha-Hydroxy-3beta-methyl-21-(4-cyano-1H-pyrazol-1′-yl)-19-nor-5beta-pregnan-20 -one (SAGE-217): A Clinical Next Generation Neuroactive Steroid Positive Allosteric Modulator of the (gamma-Aminobutyric Acid)A Receptor. J. Med. Chem. 2017;60:7810–7819. doi: 10.1021/acs.jmedchem.7b00846. PubMed DOI

Rambousek L., Bubenikova-Valesova V., Kacer P., Syslova K., Kenney J., Holubova K., Najmanova V., Zach P., Svoboda J., Stuchlik A., et al. Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-D-aspartate receptor 3α5β-pregnanolone glutamate. Neuropharmacology. 2011;61:61–68. doi: 10.1016/j.neuropharm.2011.02.018. PubMed DOI

Borovska J., Vyklicky V., Stastna E., Kapras V., Slavikova B., Horak M., Chodounska H., Vyklicky L., Jr. Access of inhibitory neurosteroids to the NMDA receptor. Br. J. Pharmacol. 2012;166:1069–1083. doi: 10.1111/j.1476-5381.2011.01816.x. PubMed DOI PMC

Kudova E., Chodounska H., Slavikova B., Budesinsky M., Nekardova M., Vyklicky V., Krausova B., Svehla P., Vyklicky L. A New Class of Potent N-Methyl-D-Aspartate Receptor Inhibitors: Sulfated Neuroactive Steroids with Lipophilic D-Ring Modifications. J. Med. Chem. 2015;58:5950–5966. doi: 10.1021/acs.jmedchem.5b00570. PubMed DOI

Holubova K., Nekovarova T., Pistovcakova J., Sulcova A., Stuchlik A., Vales K. Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models. Front. Behav. Neurosci. 2014;8:130. doi: 10.3389/fnbeh.2014.00130. PubMed DOI PMC

Kleteckova L., Tsenov G., Kubova H., Stuchlik A., Vales K. Neuroprotective effect of the 3alpha5beta-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci. Lett. 2014;564:11–15. doi: 10.1016/j.neulet.2014.01.057. PubMed DOI

Soldin O.P., Guo T., Weiderpass E., Tractenberg R.E., Hilakivi-Clarke L., Soldin S.J. Steroid hormone levels in pregnancy and 1 year postpartum using isotope dilution tandem mass spectrometry. Fertil. Steril. 2005;84:701–710. doi: 10.1016/j.fertnstert.2005.02.045. PubMed DOI PMC

Hill M., Cibula D., Havlikova H., Kancheva L., Fait T., Kancheva R., Parizek A., Starka L. Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J. Steroid Biochem. Mol. Biol. 2007;105:166–175. doi: 10.1016/j.jsbmb.2006.10.010. PubMed DOI

Hirst J.J., Yawno T., Nguyen P., Walker D.W. Stress in pregnancy activates neurosteroid production in the fetal brain. Neuroendocrinology. 2006;84:264–274. doi: 10.1159/000097990. PubMed DOI

Hirst J.J., Palliser H.K., Yates D.M., Yawno T., Walker D.W. Neurosteroids in the fetus and neonate: Potential protective role in compromised pregnancies. Neurochem. Int. 2008;52:602–610. doi: 10.1016/j.neuint.2007.07.018. PubMed DOI

Liang L., Rasmussen M.H., Piening B., Shen X., Chen S., Rost H., Snyder J.K., Tibshirani R., Skotte L., Lee N.C., et al. Metabolic Dynamics and Prediction of Gestational Age and Time to Delivery in Pregnant Women. Cell. 2020;181:1680–1692.e15. doi: 10.1016/j.cell.2020.05.002. PubMed DOI PMC

Hirst J.J., Cumberland A.L., Shaw J.C., Bennett G.A., Kelleher M.A., Walker D.W., Palliser H.K. Loss of neurosteroid-mediated protection following stress during fetal life. J. Steroid Biochem. Mol. Biol. 2016;160:181–188. doi: 10.1016/j.jsbmb.2015.09.012. PubMed DOI

Westcott K.T., Hirst J.J., Ciurej I., Walker D.W., Wlodek M.E. Brain allopregnanolone in the fetal and postnatal rat in response to uteroplacental insufficiency. Neuroendocrinology. 2008;88:287–292. doi: 10.1159/000139771. PubMed DOI

Brunton P.J., Russell J.A. Neuroendocrine control of maternal stress responses and fetal programming by stress in pregnancy. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2011;35:1178–1191. doi: 10.1016/j.pnpbp.2010.12.023. PubMed DOI

Howell K.B., Harvey A.S., Archer J.S. Epileptic encephalopathy: Use and misuse of a clinically and conceptually important concept. Epilepsia. 2016;57:343–347. doi: 10.1111/epi.13306. PubMed DOI

Capovilla G., Moshe S.L., Wolf P., Avanzini G. Epileptic encephalopathy as models of system epilepsy. Epilepsia. 2013;54((Suppl. 8)):34–37. doi: 10.1111/epi.12421. PubMed DOI

Katsnelson A., Buzsaki G., Swann J.W. Catastrophic childhood epilepsy: A recent convergence of basic and clinical neuroscience. Sci. Transl. Med. 2014;6:262ps13. doi: 10.1126/scitranslmed.3010531. PubMed DOI

Deligiannidis K.M., Meltzer-Brody S., Gunduz-Bruce H., Doherty J., Jonas J., Li S., Sankoh A.J., Silber C., Campbell A.D., Werneburg B., et al. Effect of Zuranolone vs Placebo in Postpartum Depression: A Randomized Clinical Trial. JAMA Psychiatry. 2021;78:951–959. doi: 10.1001/jamapsychiatry.2021.1559. PubMed DOI PMC

Blanco M.J., La D., Coughlin Q., Newman C.A., Griffin A.M., Harrison B.L., Salituro F.G. Breakthroughs in neuroactive steroid drug discovery. Bioorg. Med. Chem. Lett. 2018;28:61–70. doi: 10.1016/j.bmcl.2017.11.043. PubMed DOI

Claahsen-van der Grinten H.L., Stikkelbroeck N., Falhammar H., Reisch N. Management of endocrine disease: Gonadal dysfunction in congenital adrenal hyperplasia. Eur. J. Endocrinol. 2021;184:R85–R97. doi: 10.1530/EJE-20-1093. PubMed DOI

Holsboer F., Knorr D. Determination of urinary 17-hydroxypregnanolone by gas chromatography-mass spectrometry in patients with congenital adrenal hyperplasia. J. Steroid Biochem. 1977;8:1197–1199. doi: 10.1016/0022-4731(77)90074-7. PubMed DOI

Bacchus H. A method for measurement of total 17-OH, 21-methyl steroids in the urine and its application to clinical problems. Metabolism. 1967;16:153–161. doi: 10.1016/0026-0495(67)90108-4. PubMed DOI

Bell M., Varley H. The estimation of pregnanetriol and 17-hydroxypregnanolone in urine in congenital adrenal hyperplasia. Clin. Chim. Acta. 1960;5:396–405. doi: 10.1016/0009-8981(60)90145-5. PubMed DOI

Pillai G.V., Smith A.J., Hunt P.A., Simpson P.B. Multiple structural features of steroids mediate subtype-selective effects on human alpha4beta3delta GABAA receptors. Biochem. Pharmacol. 2004;68:819–831. doi: 10.1016/j.bcp.2004.05.013. PubMed DOI

Meletti S., Lucchi C., Monti G., Giovannini G., Bedin R., Trenti T., Rustichelli C., Biagini G. Low levels of progesterone and derivatives in cerebrospinal fluid of patients affected by status epilepticus. J. Neurochem. 2018;147:275–284. doi: 10.1111/jnc.14550. PubMed DOI

Lucchi C., Costa A.M., Rustichelli C., Biagini G. Allopregnanolone and Pregnanolone Are Reduced in the Hippocampus of Epileptic Rats, but Only Allopregnanolone Correlates with Seizure Frequency. Neuroendocrinology. 2021;111:536–541. doi: 10.1159/000509093. PubMed DOI

Lucchi C., Costa A.M., Senn L., Messina S., Rustichelli C., Biagini G. Augmentation of endogenous neurosteroid synthesis alters experimental status epilepticus dynamics. Epilepsia. 2020;61:e129–e134. doi: 10.1111/epi.16654. PubMed DOI

Jankovic S.M., Djesevic M., Jankovic S.V. Experimental GABA A Receptor Agonists and Allosteric Modulators for the Treatment of Focal Epilepsy. J. Exp. Pharmacol. 2021;13:235–244. doi: 10.2147/JEP.S242964. PubMed DOI PMC

Shafizadeh T.B., Halsted C.H. gamma-Glutamyl hydrolase, not glutamate carboxypeptidase II, hydrolyzes dietary folate in rat small intestine. J. Nutr. 2007;137:1149–1153. doi: 10.1093/jn/137.5.1149. PubMed DOI

Mukai H., Takata N., Ishii H.T., Tanabe N., Hojo Y., Furukawa A., Kimoto T., Kawato S. Hippocampal synthesis of estrogens and androgens which are paracrine modulators of synaptic plasticity: Synaptocrinology. Neuroscience. 2006;138:757–764. doi: 10.1016/j.neuroscience.2005.09.010. PubMed DOI

Dalla Valle L., Belvedere P., Simontacchi C., Colombo L. Extraglandular hormonal steroidogenesis in aged rats. J. Steroid Biochem. Mol. Biol. 1992;43:1095–1098. doi: 10.1016/0960-0760(92)90337-I. PubMed DOI

Dalla Valle L., Vianello S., Belvedere P., Colombo L. Rat cytochrome P450c17 gene transcription is initiated at different start sites in extraglandular and glandular tissues. J. Steroid Biochem. Mol. Biol. 2002;82:377–384. doi: 10.1016/S0960-0760(02)00219-4. PubMed DOI

Shin H.C., Kim H.R., Cho H.J., Yi H., Cho S.M., Lee D.G., Abd El-Aty A.M., Kim J.S., Sun D., Amidon G.L. Comparative gene expression of intestinal metabolizing enzymes. Biopharm. Drug Dispos. 2009;30:411–421. doi: 10.1002/bdd.675. PubMed DOI

Vianello S., Waterman M.R., Dalla Valle L., Colombo L. Developmentally regulated expression and activity of 17alpha-hydroxylase/C-17,20-lyase cytochrome P450 in rat liver. Endocrinology. 1997;138:3166–3174. doi: 10.1210/endo.138.8.5297. PubMed DOI

Emanuelsson I., Almokhtar M., Wikvall K., Gronbladh A., Nylander E., Svensson A.L., Fex Svenningsen A., Norlin M. Expression and regulation of CYP17A1 and 3beta-hydroxysteroid dehydrogenase in cells of the nervous system: Potential effects of vitamin D on brain steroidogenesis. Neurochem. Int. 2018;113:46–55. doi: 10.1016/j.neuint.2017.11.007. PubMed DOI

Missaghian E., Kempna P., Dick B., Hirsch A., Alikhani-Koupaei R., Jegou B., Mullis P.E., Frey B.M., Fluck C.E. Role of DNA methylation in the tissue-specific expression of the CYP17A1 gene for steroidogenesis in rodents. J. Endocrinol. 2009;202:99–109. doi: 10.1677/JOE-08-0353. PubMed DOI

Le Goascogne C., Sananes N., Gouezou M., Takemori S., Kominami S., Baulieu E.E., Robel P. Immunoreactive cytochrome P-450(17 alpha) in rat and guinea-pig gonads, adrenal glands and brain. J. Reprod. Fertil. 1991;93:609–622. doi: 10.1530/jrf.0.0930609. PubMed DOI

Miller W.L., Auchus R.J. The “backdoor pathway” of androgen synthesis in human male sexual development. PLoS Biol. 2019;17:e3000198. doi: 10.1371/journal.pbio.3000198. PubMed DOI PMC

Sze Y., Gill A.C., Brunton P.J. Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress. J. Neuroendocrinol. 2018;30:e12644. doi: 10.1111/jne.12644. PubMed DOI PMC

Kancheva R., Hill M., Novak Z., Chrastina J., Kancheva L., Starka L. Neuroactive steroids in periphery and cerebrospinal fluid. Neuroscience. 2011;191:22–27. doi: 10.1016/j.neuroscience.2011.05.054. PubMed DOI

Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat. J. Neurochem. 2017;142:672–685. doi: 10.1111/jnc.14117. PubMed DOI PMC

Wang M.D., Wahlstrom G., Backstrom T. The regional brain distribution of the neurosteroids pregnenolone and pregnenolone sulfate following intravenous infusion. J. Steroid Biochem. Mol. Biol. 1997;62:299–306. doi: 10.1016/S0960-0760(97)00041-1. PubMed DOI

Penning T.M., Wangtrakuldee P., Auchus R.J. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocr. Rev. 2019;40:447–475. doi: 10.1210/er.2018-00089. PubMed DOI PMC

Eechaute W.P., Dhooge W.S., Gao C.Q., Calders P., Rubens R., Weyne J., Kaufman J.M. Progesterone-transforming enzyme activity in the hypothalamus of the male rat. J. Steroid Biochem. Mol. Biol. 1999;70:159–167. doi: 10.1016/S0960-0760(99)00106-5. PubMed DOI

Shimada K., Yago K. Studies on neurosteroids X. Determination of pregnenolone and dehydroepiandrosterone in rat brains using gas chromatography-mass spectrometry-mass spectrometry. J. Chromatogr. Sci. 2000;38:6–10. doi: 10.1093/chromsci/38.1.6. PubMed DOI

Liere P., Akwa Y., Weill-Engerer S., Eychenne B., Pianos A., Robel P., Sjovall J., Schumacher M., Baulieu E.E. Validation of an analytical procedure to measure trace amounts of neurosteroids in brain tissue by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 2000;739:301–312. doi: 10.1016/S0378-4347(99)00563-0. PubMed DOI

Baulieu E.E., Robel P., Schumacher M. Neurosteroids: Beginning of the story. Int. Rev. Neurobiol. 2001;46:1–32. doi: 10.1016/s0074-7742(01)46057-0. PubMed DOI

Liu S., Sjovall J., Griffiths W.J. Neurosteroids in rat brain: Extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry. Anal. Chem. 2003;75:5835–5846. doi: 10.1021/ac0346297. PubMed DOI

Verleye M., Akwa Y., Liere P., Ladurelle N., Pianos A., Eychenne B., Schumacher M., Gillardin J.M. The anxiolytic etifoxine activates the peripheral benzodiazepine receptor and increases the neurosteroid levels in rat brain. Pharmacol. Biochem. Behav. 2005;82:712–720. doi: 10.1016/j.pbb.2005.11.013. PubMed DOI

Ebner M.J., Corol D.I., Havlikova H., Honour J.W., Fry J.P. Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology. 2006;147:179–190. doi: 10.1210/en.2005-1065. PubMed DOI

Mathur C., Prasad V.V., Raju V.S., Welch M., Lieberman S. Steroids and their conjugates in the mammalian brain. Proc. Natl. Acad. Sci. USA. 1993;90:85–88. doi: 10.1073/pnas.90.1.85. PubMed DOI PMC

Reddy D.S. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy. Front. Cell Neurosci. 2016;10:101. doi: 10.3389/fncel.2016.00101. PubMed DOI PMC

Conklin P., Heggeness F.W. Maturation of tempeature homeostasis in the rat. Am. J. Physiol. 1971;220:333–336. doi: 10.1152/ajplegacy.1971.220.2.333. PubMed DOI

Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. B. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...