Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24795582
PubMed Central
PMC3997017
DOI
10.3389/fnbeh.2014.00130
Knihovny.cz E-zdroje
- Klíčová slova
- 3α5β-pregnanolone glutamate, NMDA channel blocker, anxiety, depression, neuroactive steroid,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: A number of studies demonstrated a rapid onset of an antidepressant effect of non-competitive N-methyl-d-aspartic acid receptor (NMDAR) antagonists. Nonetheless, its therapeutic potential is rather limited, due to a high coincidence of negative side-effects. Therefore, the challenge seems to be in the development of NMDAR antagonists displaying antidepressant properties, and at the same time maintaining regular physiological function of the NMDAR. Previous results demonstrated that naturally occurring neurosteroid 3α5β-pregnanolone sulfate shows pronounced inhibitory action by a use-dependent mechanism on the tonically active NMDAR. The aim of the present experiments is to find out whether the treatment with pregnanolone 3αC derivatives affects behavioral response to chronic and acute stress in an animal model of depression. Adult male mice were used throughout the study. Repeated social defeat and forced swimming tests were used as animal models of depression. The effect of the drugs on the locomotor/exploratory activity in the open-field test was also tested together with an effect on anxiety in the elevated plus maze. Results showed that pregnanolone glutamate (PG) did not induce hyperlocomotion, whereas both dizocilpine and ketamine significantly increased spontaneous locomotor activity in the open field. In the elevated plus maze, PG displayed anxiolytic-like properties. In forced swimming, PG prolonged time to the first floating. Acute treatment of PG disinhibited suppressed locomotor activity in the repeatedly defeated group-housed mice. Aggressive behavior of isolated mice was reduced after the chronic 30-day administration of PG. PG showed antidepressant-like and anxiolytic-like properties in the used tests, with minimal side-effects. Since PG combines GABAA receptor potentiation and use-dependent NMDAR inhibition, synthetic derivatives of neuroactive steroids present a promising strategy for the treatment of mood disorders. HIGHLIGHTS: -3α5β-pregnanolone glutamate (PG) is a use-dependent antagonist of NMDA receptors.-We demonstrated that PG did not induce significant hyperlocomotion.-We showed that PG displayed anxiolytic-like and antidepressant-like properties.
Central European Institute of Technology Masaryk University Brno Czech Republic
Faculty of Medicine Department of Pharmacology Masaryk University Brno Czech Republic
Institute of Physiology Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Aldred S., Mecocci P. (2010). Decreased dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) concentrations in plasma of Alzheimer’s disease (AD) patients. Arch. Gerontol. Geriatr. 51, e16–e1810.1016/j.archger.2009.07.001 PubMed DOI
Benes F. M., Lim B., Matzilevich D., Subburaju S., Walsh J. P. (2008). Circuitry-based gene expression profiles in GABA cells of the trisynaptic pathway in schizophrenics versus bipolars. Proc. Natl. Acad. Sci. U.S.A. 105, 20935–2094010.1073/pnas.0810153105 PubMed DOI PMC
Berman R. M., Cappiello A., Anand A., Oren D. A., Heninger G. R., Charney D. S., et al. (2000). Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–35410.1016/S0006-3223(99)00230-9 PubMed DOI
Biggio G., Purdy R. H. (2001). Neurosteroids and Brain Function. San Diego, CA: Academic Press
Blanchard R. J., McKittrick C. R., Blanchard D. C. (2001). Animal models of social stress: effects on behavior and brain neurochemical systems. Physiol. Behav. 73, 261–27110.1016/S0031-9384(01)00449-8 PubMed DOI
Borovska J., Vyklicky V., Stastna E., Kapras V., Slavikova B., Horak M., et al. (2012). Access of inhibitory neurosteroids to the NMDA receptor. Br. J. Pharmacol. 166, 1069–108310.1111/j.1476-5381.2011.01816.x PubMed DOI PMC
Brot M. D., Akwa Y., Purdy R. H., Koob G. F., Britton K. T. (1997). The anxiolytic-like effects of the neurosteroid allopregnanolone: interactions with GABA(A) receptors. Eur. J. Pharmacol. 325, 1–710.1016/S0014-2999(97)00096-4 PubMed DOI
Browne C. A., Lucki I. (2013). Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front. Pharmacol. 4:161.10.3389/fphar.2013.00161 PubMed DOI PMC
Bubeníková-Valesová V., Horácek J., Vrajová M., Höschl C. (2008). Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci. Biobehav. Rev. 32, 1014–102310.1016/j.neubiorev.2008.03.012 PubMed DOI
Burgdorf J., Zhang X. L., Nicholson K. L., Balster R. L., Leander J. D., Stanton P. K., et al. (2013). GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. Neuropsychopharmacology 38, 729–74210.1038/npp.2012.246 PubMed DOI PMC
Chaouloff F. (2013). Social stress models in depression research: what do they tell us? Cell Tissue Res. 354, 179–19010.1007/s00441-013-1606-x PubMed DOI PMC
Chen H. S., Lipton S. A. (2006). The chemical biology of clinically tolerated NMDA receptors antagonist. J. Neurochem. 97, 1611–162610.1111/j.1471-4159.2006.03991.x PubMed DOI
Croarkin P. E., Levinson A. J., Daskalakis Z. J. (2011). Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci. Biobehav. Rev. 35, 818–82510.1016/j.neubiorev.2010.10.002 PubMed DOI
Danysz W., Parsons C. G., Karcz-Kubicha M., Schwaier A., Popik P., Wedzony K., et al. (1998). GlycineB antagonists as potential therapeutic agents. Previous hopes and present reality. Amino Acids 14, 235–23910.1007/BF01345268 PubMed DOI
Diazgranados N., Ibrahim L. A., Brutsche N. E., Ameli R., Henter I. D., Luckenbaugh D. A., et al. (2010). Rapid resolution of suicidal ideation after a single infusion of an N-methyl-d-aspartate antagonist in patients with treatment-resistant major depressive disorder. J. Clin. Psychiatry 71, 1605–161110.4088/JCP.09m05327blu PubMed DOI PMC
Entsuah A. R., Huang H., Thase M. E. (2001). Response and remission rates in different subpopulations with major depressive disorder administered venlafaxine, selective serotonin reuptake inhibitors, or placebo. J. Clin. Psychiatry 62, 869–87710.4088/JCP.v62n1106 PubMed DOI
Eser D., Romeo E., Baghai T. C., di Michele F., Schüle C., Pasini A., et al. (2006). Neuroactive steroids as modulators of depression and anxiety. Neuroscience 138, 1041–104810.1016/j.neuroscience.2005.07.007 PubMed DOI
Felice D., O’Leary O. F., Pizzo R. C., Cryan J. F. (2012). Blockade of the GABA(B) receptor increases neurogenesis in the ventral but not dorsal adult hippocampus: relevance to antidepressant action. Neuropharmacology 63, 1380–138810.1016/j.neuropharm.2012.06.066 PubMed DOI
Gibbs T. T., Russek S. J., Farb D. H. (2006). Sulfated steroids as endogenous neuromodulators. Pharmacol. Biochem. Behav. 84, 555–56710.1016/j.pbb.2006.07.031 PubMed DOI
Hayley S., Litteljohn D. (2014). Neuroplasticity and the next wave of antidepressant strategies. Front. Cell Neurosci. 7:218.10.3389/fncel.2013.00218 PubMed DOI PMC
Hoffman A. R., Ceda G., Reisine T. D. (1985). Corticotropin-releasing factor desensitization of adrenocorticotropic hormone release is augmented by arginine vasopressin. J. Neurosci. 5, 234–242 PubMed PMC
Huhman K. L. (2006). Social conflict models: can they inform us about human psychopathology? Horm. Behav. 50, 640–64610.1016/j.yhbeh.2006.06.022 PubMed DOI
Irwin R. P., Lin S. Z., Rogawski M. A., Purdy R. H., Paul S. M. (1994). Steroid potentiation and inhibition of N-methyl-d-aspartate receptor-mediated intracellular Ca++ responses: structure-activity studies. J. Pharmacol. Exp. Ther. 271, 677–682 PubMed
Jasnow A. M., Cooper M. A., Huhman K. L. (2004). N-methyl-d-aspartate receptors in the amygdala are necessary for the acquisition and expression of conditioned defeat. Neuroscience 123, 625–63410.1016/j.neuroscience.2003.10.015 PubMed DOI
Jasnow A. M., Huhman K. L. (2001). Activation of GABA(A) receptors in the amygdala blocks the acquisition and expression of conditioned defeat in Syrian hamsters. Brain Res. 920, 142–15010.1016/S0006-8993(01)03054-2 PubMed DOI
Karcz-Kubicha M., Wedzony K., Zajaczkowski W., Danysz W. (1999). NMDA receptor antagonists acting at the glycineB site in rat models for antipsychotic-like activity. J. Neural. Transm. 106, 1189–120410.1007/s007020050233 PubMed DOI
Kemp J. A., McKernan R. M. (2002). NMDA receptor pathways as drug targets. Nat. Neurosci. 5(Suppl.), 1039–104210.1038/nn936 PubMed DOI
Kim S. B., Hill M., Kwak Y. T., Hampl R., Jo D. H., Morfin R. (2003). Neurosteroids: cerebrospinal fluid levels for Alzheimer’s disease and vascular dementia diagnostics. J. Clin. Endocrinol. Metab. 88, 5199–520610.1210/jc.2003-030646 PubMed DOI
Korinek M., Kapras V., Vyklicky V., Adamusova E., Borovska J., Vales K., et al. (2011). Neurosteroid modulation of N-methyl-d-aspartate receptors: molecular mechanism and behavioral effects. Steroids 76, 1409–141810.1016/j.steroids.2011.09.002 PubMed DOI
Krystal J. H., Karper L. P., Seibyl J. P., Freeman G. K., Delaney R., Bremner J. D., et al. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–21410.1001/archpsyc.1994.03950030035004 PubMed DOI
Kussius C. L., Kaur N., Popescu G. K. (2009). Pregnanolone sulfate promotes desensitization of activated NMDA receptors. J. Neurosci. 29, 6819–682710.1523/JNEUROSCI.0281-09.2009 PubMed DOI PMC
Lam R. W. (2012). Onset, time course and trajectories of improvement with antidepressants. Eur. Neuropsychopharmacol. 22(Suppl. 3), S492–S49810.1016/j.euroneuro.2012.07.005 PubMed DOI
Lapidus K. A., Soleimani L., Murrough J. W. (2013). Novel glutamatergic drugs for the treatment of mood disorders. Neuropsychiatr. Dis. Treat. 9, 1101–111210.2147/NDT.S36689 PubMed DOI PMC
Layer R. T., Popik P., Olds T., Skolnick P. (1995). Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715). Pharmacol. Biochem. Behav. 52, 621–62710.1016/0091-3057(95)00155-P PubMed DOI
Li N., Liu R. J., Dwyer J. M., Banasr M., Lee B., Son H., et al. (2011). Glutamate N-methyl-d-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry 69, 754–76110.1016/j.biopsych.2010.12.015 PubMed DOI PMC
Lipton A. S. (2006). NMDA receptors, glial cells, and clinical medicine. Neuron 50, 9–1110.1016/j.neuron.2006.03.026 PubMed DOI
Lipton A. S. (2007). Pathologically activated therapeutics for neuroprotection. Nat. Rev. Neurosci. 8, 803–80810.1038/nrn2260 PubMed DOI
Luchetti S., Bossers K., Frajese G. V., Swaab D. F. (2010). Neurosteroid biosynthetic pathway changes in substantia nigra and caudate nucleus in Parkinson’s disease. Brain Pathol. 20, 945–95110.1111/j.1750-3639.2010.00396.x PubMed DOI PMC
Lucki I., Dalvi A., Mayorga A. J. (2001). Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl.) 155, 315–32210.1007/s002130100694 PubMed DOI
MacKenzie E. M., Odontiadis J., Le Mellédo J. M., Prior T. I., Baker G. B. (2007). The relevance of neuroactive steroids in schizophrenia, depression, and anxiety disorders. Cell. Mol. Neurobiol. 27, 541–57410.1007/s10571-006-9086-0 PubMed DOI PMC
Maninger N., Wolkowitz O. M., Reus V. I., Epel E. S., Mellon S. H. (2009). Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front. Neuroendocrinol. 30:65–9110.1016/j.yfrne.2008.11.002 PubMed DOI PMC
Mason S. S., Baker K. B., Davis K. W., Pogorelov V. M., Malbari M. M., Ritter R., et al. (2009). Differential sensitivity to SSRI and tricyclic antidepressants in juvenile and adult mice of three strains. Eur. J. Pharmacol. 602, 306–31510.1016/j.ejphar.2008.11.010 PubMed DOI
Meerlo P., Overkamp G. J., Benning M. A., Koolhaas J. M., Van den Hoofdakker R. H. (1996). Long-term changes in open field behaviour following a single social defeat in rats can be reversed by sleep deprivation. Physiol. Behav. 60, 115–11910.1016/0031-9384(95)02271-6 PubMed DOI
Morrow A. L. (2007). Recent developments in the significance and therapeutic relevance of neuroactive steroids – introduction to the special issue. Pharmacol. Ther. 116, 1–610.1016/j.pharmthera.2007.04.003 PubMed DOI PMC
Murrough J. W., Perez A. M., Pillemer S., Stern J., Parides M. K., Aan Het Rot M., et al. (2013). Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol. Psychiatry 74, 250–25610.1016/j.biopsych.2012.06.022 PubMed DOI PMC
Nafziger A. N., Bowlin S. J., Jenkins P. L., Pearson T. A. (1998). Longitudinal changes in dehydroepiandrosterone concentrations in men and women. J. Lab. Clin. Med. 131, 316–32310.1016/S0022-2143(98)90181-0 PubMed DOI
Olivares E. L., Silva-Almeida C., Pestana F. M., Sonoda-Côrtes R., Araujo I. G., Rodrigues N. C., et al. (2012). Social stress-induced hypothyroidism is attenuated by antidepressant treatment in rats. Neuropharmacology 62, 446–45610.1016/j.neuropharm.2011.08.035 PubMed DOI
Parsons C. G. (2001). NMDA receptors as targets for drug action in neuropathic pain. Eur. J. Pharmacol. 429, 71–7810.1016/S0014-2999(01)01307-3 PubMed DOI
Pérez-Neri I., Montes S., Ríos C. (2009). Inhibitory effect of dehydroepiandrosterone on brain monoamine oxidase activity: in vivo and in vitro studies. Life Sci. 85, 652–65610.1016/j.lfs.2009.09.008 PubMed DOI
Petit-Demouliere B., Chenu F., Bourin M. (2005). Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl.) 177, 245–25510.1007/s00213-004-2048-7 PubMed DOI
Petrovic M., Sedlacek M., Horak M., Chodounska H., Vyklický L., Jr. (2005). 20-oxo-5beta-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. J. Neurosci. 25, 8439–845010.1523/JNEUROSCI.1407-05.2005 PubMed DOI PMC
Pilc A., Wieronska J. M., Skolnick P. (2013). Glutamate-based antidepressants: preclinical psychopharmacology. Biol. Psychiatry 73, 1125–113210.1016/j.biopsych.2013.01.021 PubMed DOI
Pinna G., Agis-Balboa R. C., Pibiri F., Nelson M., Guidotti A., Costa E. (2008). Neurosteroid biosynthesis regulates sexually dimorphic fear and aggressive behavior in mice. Neurochem. Res. 33, 1990–200710.1007/s11064-008-9718-5 PubMed DOI
Pinna G., Costa E., Guidotti A. (2006). Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl.) 186, 362–37210.1007/s00213-005-0213-2 PubMed DOI
Pintér O., Domokos Á, Mergl Z., Mikics É, Zelena D. (2011). Do stress hormones connect environmental effects with behavior in the forced swim test? Endocr. J. 58, 395–40710.1507/endocrj.K10E-375 PubMed DOI
Pistovcakova J., Makatsori A., Sulcova A., Jezova D. (2005). Felbamate reduces hormone release and locomotor hypoactivity induced by repeated stress of social defeat in mice. Eur. Neuropsychopharmacol. 15, 153–15810.1016/j.euroneuro.2004.08.007 PubMed DOI
Popik P., Mamczarz J., Fraczek M., Widła M., Hesselink M., Danysz W. (1998). Inhibition of reinforcing effects of morphine and naloxone-precipitated opioid withdrawal by novel glycine site and uncompetitive NMDA receptor antagonists. Neuropharmacology 37, 1033–104210.1016/S0028-3908(98)00105-1 PubMed DOI
Porsolt R. D., Anton G., Blavet N., Jalfre M. (1978). Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur. J. Pharmacol. 47, 379–39110.1016/0014-2999(78)90118-8 PubMed DOI
Pringle A. K., Schmidt W., Deans J. K., Wulfert E., Reymann K. G., Sundstrom L. E. (2003). 7-Hydroxylated epiandrosterone (7-OH-EPIA) reduces ischaemia-induced neuronal damage both in vivo and in vitro. Eur. J. Neurosci. 18, 117–12410.1046/j.1460-9568.2003.02734.x PubMed DOI
Rambousek L., Bubenikova-Valesova V., Kacer P., Syslova K., Kenney J., Holubova K., et al. (2011). Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-d-aspartate receptor 3α5β-pregnanolone glutamate. Neuropharmacology 61, 61–6810.1016/j.neuropharm.2011.02.018 PubMed DOI
Razzoli M., Carboni L., Arban R. (2009). Alterations of behavioral and endocrinological reactivity induced by 3 brief social defeats in rats: relevance to human psychopathology. Psychoneuroendocrinology 34, 1405–141610.1016/j.psyneuen.2009.04.018 PubMed DOI
Rodgers R. J., Johnson N. J. (1998). Behaviorally selective effects of neuroactive steroids on plus-maze anxiety in mice. Pharmacol. Biochem. Behav. 59, 221–23210.1016/S0091-3057(97)00339-0 PubMed DOI
Rodríguez-Landa J. F., Contreras C. M., García-Ríos R. I. (2009). Allopregnanolone microinjected into the lateral septum or dorsal hippocampus reduces immobility in the forced swim test: participation of the GABAA receptor. Behav. Pharmacol. 20, 614–62210.1097/FBP.0b013e328331b9f2 PubMed DOI
Rogóz Z., Skuza G., Maj J., Danysz W. (2002). Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology 42, 1024–103010.1016/S0028-3908(02)00055-2 PubMed DOI
Romeo E., Ströhle A., Spalletta G., di Michele F., Hermann B., Holsboer F., et al. (1998). Effects of antidepressant treatment on neuroactive steroids in major depression. Am. J. Psychiatry 155, 910–913 PubMed
Rygula R., Abumaria N., Flügge G., Fuchs E., Rüther E., Havemann-Reinecke U. (2005). Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav. Brain Res. 162, 127–13410.1016/j.bbr.2005.03.009 PubMed DOI
Schüle C., Eser D., Baghai T. C., Nothdurfter C., Kessler J. S., Rupprecht R. (2011). Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience 191, 55–7710.1016/j.neuroscience.2011.03.025 PubMed DOI
Schüle C., Nothdurfter C., Rupprecht R. (2014). The role of allopregnanolone in depression and anxiety. Prog. Neurobiol. 113, 79–8710.1016/j.pneurobio.2013.09.003 PubMed DOI
Sequeira-Cordero A., Mora-Gallegos A., Cuenca-Berger P., Fornaguera-Trías J. (2013). Individual differences in the immobility behavior in juvenile and adult rats are associated with monoaminergic neurotransmission and with the expression of corticotropin-releasing factor receptor 1 in the nucleus accumbens. Behav. Brain Res. 252, 77–8710.1016/j.bbr.2013.05.046 PubMed DOI
Serra M., Pisu M. G., Littera M., Papi G., Sanna E., Tuveri F., et al. (2000). Social isolation-induced decreases in both the abundance of neuroactive steroids and GABA(A) receptor function in rat brain. J. Neurochem. 75, 732–74010.1046/j.1471-4159.2000.0750732.x PubMed DOI
Sorwell K. G., Urbanski H. F. (2010). Dehydroepiandrosterone and age-related cognitive decline. Age (Dordr). 32, 61–6710.1007/s11357-009-9113-4 PubMed DOI PMC
Sulcova A., Krsiak M. (1987). Differences among nine 1,4-benzodiazepines: an ethopharmacological evaluation in mice. Psychopharmacology (Berl.) 97, 157–15910.1007/BF00442240 PubMed DOI
Thase M. E., Haight B. R., Richard N., Rockett C. B., Mitton M., Modell J. G. (2005). Remission rates following antidepressant therapy with bupropion or selective serotonin reuptake inhibitors: a meta-analysis of original data from 7 randomized controlled trials. J. Clin. Psychiatry 66, 974–98110.4088/JCP.v66n0803 PubMed DOI
Trullas R., Skolnick P. (1990). Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur. J. Pharmacol. 185, 1–1010.1016/0014-2999(90)90204-J PubMed DOI
Urani A., Roman F. J., Phan V. L., Su T. P., Maurice T. (2001). The antidepressant-like effect induced by sigma(1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J. Pharmacol. Exp. Ther. 298, 1269–1279 PubMed
Uzunov D. P., Cooper T. B., Costa E., Guidotti A. (1996). Fluoxetine-elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc. Natl. Acad. Sci. U.S.A. 93, 12599–1260410.1073/pnas.93.22.12599 PubMed DOI PMC
Uzunova V., Sheline Y., Davis J. M., Rasmusson A., Uzunov D. P., Costa E., et al. (1998). Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc. Natl. Acad. Sci. U.S.A. 95, 3239–324410.1073/pnas.95.6.3239 PubMed DOI PMC
Vales K., Rambousek L., Holubova K., Svoboda J., Bubenikova-Valesova V., Chodounska H., et al. (2012). 3α5β-Pregnanolone glutamate, a use-dependent NMDA antagonist, reversed spatial learning deficit in an animal model of schizophrenia. Behav. Brain Res. 235, 82–8810.1016/j.bbr.2012.07.020 PubMed DOI
Vallée M., Mayo W., Darnaudéry M., Corpéchot C., Young J., Koehl M., et al. (1997). Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 94, 14865–1487010.1073/pnas.94.26.14865 PubMed DOI PMC
van Bokhoven P., Oomen C. A., Hoogendijk W. J., Smit A. B., Lucassen P. J., Spijker S. (2011). Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment. Eur. J. Neurosci. 33, 1833–184010.1111/j.1460-9568.2011.07668.x PubMed DOI
Veiga S., Garcia-Segura L. M., Azcoitia I. (2003). Neuroprotection by the steroids pregnenolone and dehydroepiandrosterone is mediated by the enzyme aromatase. J. Neurobiol. 56, 398–40610.1002/neu.10249 PubMed DOI
Venzala E., García-García A. L., Elizalde N., Delagrange P., Tordera R. M. (2012). Chronic social defeat stress model: behavioral features, antidepressant action, and interaction with biological risk factors. Psychopharmacology (Berl.) 224, 313–32510.1007/s00213-012-2754-5 PubMed DOI
Venzala E., García-García A. L., Elizalde N., Tordera R. M. (2013). Social vs. environmental stress models of depression from a behavioural and neurochemical approach. Eur. Neuropsychopharmacol. 23, 697–70810.1016/j.euroneuro.2012.05.010 PubMed DOI
Weaver C. E., Land M. B., Purdy R. H., Richards K. G., Gibbs T. T., Farb D. H. (2000). Geometry and charge determine pharmacological effects of steroids on N-methyl-d-aspartate receptor-induced Ca(2+) accumulation and cell death. J. Pharmacol. Exp. Ther. 293, 747–754 PubMed
Wolkowitz O. M., Reus V. I., Keebler A., Nelson N., Friedland M., Brizendine L., et al. (1999). Double-blind treatment of major depression with dehydroepiandrosterone. Am. J. Psychiatry 156, 646–649 PubMed
Wolkowitz O. M., Reus V. I., Roberts E., Manfredi F., Chan T., Raum W. J., et al. (1997). Dehydroepiandrosterone (DHEA) treatment of depression. Biol. Psychiatry 41, 311–31810.1016/S0006-3223(96)00043-1 PubMed DOI
Zarate C. A., Jr., Brutsche N. E., Ibrahim L., Franco-Chaves J., Diazgranados N., Cravchik A., et al. (2012). Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol. Psychiatry 71, 939–94610.1016/j.biopsych.2011.12.010 PubMed DOI PMC
Zarate C. A., Jr., Singh J. B., Carlson P. J., Brutsche N. E., Ameli R., Luckenbaugh D. A., et al. (2006). A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63, 856–86410.1001/archpsyc.63.8.856 PubMed DOI
Zorumski C. F., Paul S. M., Izumi Y., Covey D. F., Mennerick S. (2013). Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci. Biobehav. Rev. 37, 109–12210.1016/j.neubiorev.2012.10.005 PubMed DOI PMC