Strong Inhibitory Effect, Low Cytotoxicity and High Plasma Stability of Steroidal Inhibitors of N-Methyl-D-Aspartate Receptors With C-3 Amide Structural Motif
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30483134
PubMed Central
PMC6240685
DOI
10.3389/fphar.2018.01299
Knihovny.cz E-zdroje
- Klíčová slova
- NMDA receptor, amide, neurosteroid, plasma stability, structure-activity relationship,
- Publikační typ
- časopisecké články MeSH
Herein, we report the synthesis, structure-activity relationship study, and biological evaluation of neurosteroid inhibitors of N-methyl-D-aspartate receptors (NMDARs) receptors that employ an amide structural motif, relative to pregnanolone glutamate (PAG) - a compound with neuroprotective properties. All compounds were found to be more potent NMDAR inhibitors (IC50 values varying from 1.4 to 21.7 μM) than PAG (IC50 = 51.7 μM). Selected compound 6 was evaluated for its NMDAR subtype selectivity and its ability to inhibit AMPAR/GABAR responses. Compound 6 inhibits the NMDARs (8.3 receptors (8.3 ± 2.1 μM) more strongly than it does at the GABAR and AMPARs (17.0 receptors (17.0 ± 0.2 μM and 276.4 ± 178.7 μM, respectively). In addition, compound 6 (10 μM) decreases the frequency of action potentials recorded in cultured hippocampal neurons. Next, compounds 3, 5-7, 9, and 10 were not associated with mitotoxicity, hepatotoxicity nor ROS induction. Lastly, we were able to show that all compounds have improved rat and human plasma stability over PAG.
Faculty of Mathematics and Physics Charles University Prague Prague Czechia
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czechia
Institute of Physiology Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Adla S. K., Slavikova B., Smidkova M., Tloustova E., Svoboda M., Vyklicky V., et al. (2017). Physicochemical and biological properties of novel amide-based steroidal inhibitors of NMDA receptors. Steroids 117 52–61. 10.1016/j.steroids.2016.08.010 PubMed DOI
Ahlrichs R., Bar M., Haser M., Horn H., Kolmel C. (1989). Electronic-structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162 165–169. 10.1016/0009-2614(89)85118-8 DOI
Bannan C. C., Calabro G., Kyu D. Y., Mobley D. L. (2016). Calcultaing partition coefficients of small molecules in octanol/water and cyclohexanes/water. J. Chem. Theory Comput. 12 4015–4024. 10.1021/acs.jctc.6b00449 PubMed DOI PMC
Bayly C. I., Cieplak P., Cornell W. D., Kollman P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP Model. J. Phys. Chem. 97 10269–10280. 10.1021/j100142a004 DOI
Borovska J., Vyklicky V., Stastna E., Kapras V., Slavikova B., Horak M., et al. (2012). Access of inhibitory neurosteroids to the NMDA receptor. Br. J. Pharmacol. 166 1069–1083. 10.1111/j.1476-5381.2011.01816.x PubMed DOI PMC
Cais O., Sedlacek M., Horak M., Dittert I., Vyklicky L., Jr. (2008). Temperature dependence of NR1/NR2B NMDA receptor channels. Neuroscience 151 428–438. 10.1016/j.neuroscience.2007.11.002 PubMed DOI
Case D. A., Babin V., Berryman J. T., Betz R. M., Cai Q., Cerutti D. S., et al. (2014). AMBER 14. San Francisco: University of California.
ChemAxon (2015). Marvin was used for Drawing, Displaying and Characterizing Chemical Structures, Substructures and Reactions, Marvin 15.1.19. Available at: http://www.chemaxon.com
Citri A., Malenka R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33 18–41. 10.1038/sj.npp.1301559 PubMed DOI
De Lano W. L., Lam J. W. (2010). The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger. New York, NY: LLC.
Dong X. X., Wang Y., Qin Z. H. (2009). Molecular mechanism of excitotoxicity and their relevance to pathogenesis of neurodegenerative disease. Acta Pharmacol. Sin. 30 379–387. 10.1038/aps.2009.24 PubMed DOI PMC
Faassen F., Kelder J., Lenders J., Onderwater R., Vromans H. (2003). Physicochemical properties and transport of steroids across Caco-2 cells. Pharm. Res. 20 177–186. 10.1023/A:1022210801734 PubMed DOI
Faucher F., Cantin L., Luu-The V., Labrie F., Breton R. (2008). The crystal structure of human delta-4-3-ketosteroid 5-beta-reductase defines the functional role of the residues of the catalytic tetrad in the steroid double bond reduction mechanism. Biochemistry 47 8261–8270. 10.1021/bi800572s PubMed DOI
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R. (2009). Gaussian 09. Wallingford, CT: Gaussian Inc.
Gerets H. H. J., Hanon E., Cornet M., Dhalluin S., Depelchin O., Canning M., et al. (2009). Selection of cytotoxicity markers for the screening of new chemical entities in a pharmaceutical context: a preliminary study using a multiplexing approach. Toxicol. In Vitro 23 319–332. 10.1016/j.tiv.2008.11.012 PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132 1541–1504. 10.1063/1.3382344 PubMed DOI
Holubova K., Nekovarova T., Pistovcakova J., Sulcova A., Stuchlik A., Vales K. (2014). Pregnanolone glutamate, a novel use-dependent NMDA receptor inhibitor, exerts antidepressant-like properties in animal models. Front. Behav. Neurosci. 8:130. 10.3389/fnbeh.2014.00130 PubMed DOI PMC
Hynd M. R., Scott H. L., Dodd P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimert’s disease. J. Neurochem. Int. 45 583–595. 10.1016/j.neuint.2004.03.007 PubMed DOI
Irwin R. P., Lin S. Z., Rogawski M. A., Purdy R. H., Paul S. M. (1994). Steroid potentiation and inhibition of n-methyl-d-aspartate receptor-mediated intracellular ca++ responses: structure-activity studies. J. Pharmacol. Exp. Ther. 271 677–682. PubMed
Jurecka P., Cerny J., Hobza P., Salahub D. R. (2007). Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J. Comput. Chem. 28 555–569. 10.1002/jcc.20570 PubMed DOI
Kah M., Brown C. D. (2008). LogD:lipophilicity for inonisable compounds. Chemosphere 72 1401–1408. 10.1016/j.chemosphere.2008.04.074 PubMed DOI
Klamt A., Schuurmann G. (1993). Cosmo: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 799–805. 10.1039/P29930000799 DOI
Kleteckova L., Tsenov G., Kubova H., Stuchlik A., Vales K. (2014). Neuroprotective Effect of the 3α5β-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci. Lett. 564 11–15. 10.1016/j.neulet.2014.01.057 PubMed DOI
Kolar M., Fanfrlik J., Lepsik M., Forti F., Luque F. J., Hobza P. (2013). Assessing the accuracy and performance of implicit solvent models for drug molecules: conformational ensemble approaches. J. Phys. Chem. B 1175950–62. 10.1021/jp402117c PubMed DOI
Korinek K., Sedlacek M., Cais O., Dittert I., Vyklicky L. (2010). Temperature dependence of N-methyl-D-aspartate receptor excitatory postsynaptic currents. Neuroscience 165 736–748. 10.1016/j.neuroscience.2009.10.058 PubMed DOI
Kudova E., Chodounska H., Kapras V., Vyklicky L., Vales K., Jahn U. (2014). Amphiphilic Compounds with Neuroprotective Properties. U.S. Patent Application CA EP 3,186,267 A1, 2,957,906 A1, US 2017020588 Washington, DC: U.S. Patent and Trademark Office.
Kudova E., Chodounska H., Slavikova B., Budesinsky M., Nekardova M., Vyklicky V., et al. (2015). A new class of potent N-methyl-D-aspartate receptor inhibitors: Sulfated neuroactive steroids with lipophilic D-ring modifications. J. Med. Chem. 58 5950–5966. 10.1021/acs.jmedchem.5b00570 PubMed DOI
Marenich A. V., Cramer C. J., Truhlar D. G. (2009). Universal Solvation Model Based on the Generalized Born Approximation with Asymmetric Descreening. J. Chem. Theory Comput. 5 2447–2464. 10.1021/ct900312z PubMed DOI
Meanwell N. A. (2011). Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 54 2529–2591. 10.1021/jm1013693 PubMed DOI
Onyema O. O., Farombi E. O., Emerole G. O., Ukoha A. I., Onyeze G. O. (2006). Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidativestress in rats. Indian J. Biochem. Biophys. 43 20–24. PubMed
Park-Chung M., Wu F. S., Purdy R. H., Malayev A. A., Gibbs T. T., Farb D. H. (1997). Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Mol. Pharmacol. 52 1113–1123. 10.1124/mol.52.6.1113 PubMed DOI
Petrovic M., Sedlacek M., Horak M., Chodounska H., Vyklicky L., Jr. (2005). 20-Oxo-5beta-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. J. Neurosci. 25 8439–8450. 10.1523/JNEUROSCI.1407-05.2005 PubMed DOI PMC
Rambousek L., Bubenikova-Valesova V., Kacer P., Syslova K., Kenney J., Holubova K., et al. (2011). Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-D-aspartate receptor 3α5β-pregnanolone glutamate. Neuropharmacology 61 61–68. 10.1016/j.neuropharm.2011.02.018 PubMed DOI
Schötller C., Krisch K. (1974). Hydrolysis of steroid hormone esters by an unspecific carboxylesterase form pig liver microsome. Biochem. Pharmacol. 20 2867–2875. 10.1016/0006-2952(74)90061-6 PubMed DOI
Sevam R., Bijikurien T. (1987). Induction of lipid peroxidation by oxalate inexperimental rat urolithiasis. J. Biol. Sci. 121 267–373. 10.1007/BF02898585 DOI
Slavikova B., Chodounska H., Nekardova M., Vyklicky V., Marek L., Hubalkova T., et al. (2016). Neurosteroid-like inhibitors of N-methyl-D-aspartate receptor: substituted 2-sulfates and 2-hemisuccinates of perhydrophenathrene. J. Med. Chem. 59 4724–4739. 10.1021/acs.jmedchem.6b00079 PubMed DOI
Van den Hof W., Coonen M. L. J., van Herwijnen M., Brauers K., Wodzig W., van Delft J. H. M., et al. (2013). Classification of hepatotoxicants using HepG2 cells: a proof of principle study. Chem. Res. Toxicol. 27 433–442. 10.1021/tx4004165 PubMed DOI
Vyklicky V., Krausova B., Cerny J., Balik A., Zapotocky M., Novotny M., et al. (2015). Block of NMDA receptor channels by endogeneous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci. Rep. 5:10935. 10.1038/srep10935 PubMed DOI PMC
Vyklicky V., Smejkalova T., Krausova B., Balik A., Korinek M., Borovska J., et al. (2016). Preferential inhibition of tonically over phasically activated NMDA receptors by pregnane derivatives. J. Neurosci. 36 2161–2175. 10.1523/JNEUROSCI.3181-15.2016 PubMed DOI PMC
Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25 1157–1174. 10.1002/jcc.20035 PubMed DOI
Weaver C. E., Land M. B., Purdy R. H., Richards K. G., Gibbs T. T., Farb D. H. (2000). Geometry, and charge determine pharmacological effects of steroids on N-methyl-D-aspartate receptor-induced Ca2 + accumulation, and cell death. J. Pharmacol. Exp. Ther. 293747–754. PubMed