Neurosteroids: Structure-Uptake Relationships and Computational Modeling of Organic Anion Transporting Polypeptides (OATP)1A2

. 2021 Sep 17 ; 26 (18) : . [epub] 20210917

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34577133

Grantová podpora
256837, 294227, 294229, 307057, 311939 Academy of Finland
OP RDE (Project IOCB MSCA Mobility IV, No. CZ.02.2.69/0.0/0.0/20_079/0017783) European Social Fund
ERDF/ESF Project "PharmaBrain" No. CZ.02.1.01/0.0/0.0/16_025/0007444 European Regional Development Fund
RVO 61388963 Academy of Sciences of the Czech Republic (AS CR)

In this study, we investigated the delivery of synthetic neurosteroids into MCF-7 human breast adenocarcinoma cells via Organic Anionic Transporting Polypeptides (OATPs) (pH 7.4 and 5.5) to identify the structural components required for OATP-mediated cellular uptake and to get insight into brain drug delivery. Then, we identified structure-uptake relationships using in-house developed OATP1A2 homology model to predict binding sites and modes for the ligands. These binding modes were studied by molecular dynamics simulations to rationalize the experimental results. Our results show that carboxylic acid needs to be at least at 3 carbon-carbon bonds distance from amide bond at the C-3 position of the androstane skeleton and have an amino group to avoid efflux transport. Replacement of hydroxyl group at C-3 with any of the 3, 4, and 5-carbon chained terminal carboxylic groups improved the affinity. We attribute this to polar interactions between carboxylic acid and side-chains of Lys33 and Arg556. The additional amine group showed interactions with Glu172 and Glu200. Based on transporter capacities and efficacies, it could be speculated that the functionalization of acetyl group at the C-17 position of the steroidal skeleton might be explored further to enable OAT1A2-mediated delivery of neurosteroids into the cells and also across the blood-brain barrier.

Zobrazit více v PubMed

Shintani E.Y. Donepezil: An anticholinesterase inhibitor for Alzheimer’s disease. Am. J. Health-Syst. Pharm. 1997;54:2805–2810. doi: 10.1093/ajhp/54.24.2805. PubMed DOI

Brewster J.T., Dell’Acqua S., Thach D.Q., Sessler J.L. Classics in chemical neuroscience: Donepezil. ACS Chem. Neurosci. 2018;10:155–167. doi: 10.1021/acschemneuro.8b00517. PubMed DOI

Chen Y., Shohami E., Constantini S., Weinstock M. Rivastigmine, a brain-selective acetylcholinesterase inhibitor, ameliorates cognitive and motor deficits induced by closed-head injury in the mouse. J. Neurotrauma. 1998;15:231–237. doi: 10.1089/neu.1998.15.231. PubMed DOI

Hua Y.-G., Han L.-P., Yang Q.-Q., Wang M.-J., Zhang E., Liu H.-M. A practical and efficient stereoselective synthesis of (S)-rivastigmine and (R)-rivastigmine. ChemistrySelect. 2018;3:1385–1387. doi: 10.1002/slct.201703032. DOI

Pearson V.E. Galantamine: A new Alzheimer drug with a past life. Ann. Pharmacother. 2001;35:1406–1413. doi: 10.1345/aph.1A092. PubMed DOI

Agatonovic-Kustrin S., Kettle C., Morton D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother. 2018;106:553–565. doi: 10.1016/j.biopha.2018.06.147. PubMed DOI

Ferris S.H. Evaluation of memantine for the treatment of Alzheimer’s disease. Expert Opin. Pharmacother. 2003;4:2305–2313. doi: 10.1517/14656566.4.12.2305. PubMed DOI

Ebrahem A.S., Oremus M. A pharmacoeconomic evaluation of cholinesterase inhibitors and memantine for the treatment of Alzheimer’s disease. Expert Opin. Pharmacother. 2018;19:1245–1259. doi: 10.1080/14656566.2018.1499727. PubMed DOI

Lee G., Dallas S., Hong M., Bendayan R. Drug transporters in the central nervous system: Brain barriers and brain parechyma considerations. Pharmacol. Rev. 2001;53:569–596. doi: 10.1146/annurev.pharmtox.41.1.569. PubMed DOI

Pardridge W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012;32:1959–1972. doi: 10.1038/jcbfm.2012.126. PubMed DOI PMC

Kell D.B., Oliver S.G., de Koning H.P. How drugs get into cells: Tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front. Pharmacol. 2014;5:231. doi: 10.3389/fphar.2014.00231. PubMed DOI PMC

Dobson P.D., Kell D.B. Carrier-mediated cellular uptake of pharmaceutical drugs: An exception or the rule? Nat. Rev. Drug Discov. 2008;7:205–220. doi: 10.1038/nrd2438. PubMed DOI

Girardin F. Membrane transporter proteins: A challenge for CNS drug development. Dialogues Clin. Neurosci. 2006;8:311. doi: 10.31887/DCNS.2006.8.3/fgirardin. PubMed DOI PMC

Kell D.B., Dobson P.D., Oliver S.G. Pharmaceutical drug transport: The issues and the implications that it is essentially carrier-mediated only. Drug Discov. Today. 2011;16:704–714. doi: 10.1016/j.drudis.2011.05.010. PubMed DOI

Ronaldson P.T., Davis T.P. Targeted drug delivery to treat pain and cerebral hypoxia. Pharmacol. Rev. 2013;65:291–314. doi: 10.1124/pr.112.005991. PubMed DOI PMC

Vallee M., Mayo W., Darnaudery M., Corpechot C., Young J., Koehl M., le Moal M., Baulieu E.-E., Robel P., Simon H. Neurosteroids: Deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc. Natl. Acad. Sci. USA. 1997;94:14865–14870. doi: 10.1073/pnas.94.26.14865. PubMed DOI PMC

Mellon S.H., Griffin L.D. Synthesis, regulation, and function of neurosteroids. Endocr. Res. 2002;28:463. doi: 10.1081/ERC-120016823. PubMed DOI

Morrow A.L. Recent developments in the significance and therapeutic relevance of neuroactive steroids—Introduction to the special issue. Pharmacol. Ther. 2007;116:1–6. doi: 10.1016/j.pharmthera.2007.04.003. PubMed DOI PMC

Hosie A.M., Wilkins M.E., Smart T.G. Neurosteroid binding sites on GABAA receptors. Pharmacol. Ther. 2007;116:7–19. doi: 10.1016/j.pharmthera.2007.03.011. PubMed DOI

Wu F.-S., Chen S.-C., Tsai J.-J. Competitive inhibition of the glycine-induced current by pregnenolone sulfate in cultured chick spinal cord neurons. Brain Res. 1997;750:318–320. doi: 10.1016/S0006-8993(97)00053-X. PubMed DOI

Yaghoubi N., Malayev A., Russek S.J., Gibbs T.T., Farb D.H. Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Res. 1998;803:153–160. doi: 10.1016/S0006-8993(98)00644-1. PubMed DOI

Sedláček M., Kořínek M., Petrovič M., Cais O., Adamusová E., Chodounská H., Ladislav V., Jr. Neurosteroid modulation of ionotropic glutamate receptors and excitatory synaptic transmission. Physiol. Res. 2008;57((Suppl. 3)):S49–S57. doi: 10.33549/physiolres.931600. PubMed DOI

Mota S.I., Ferreira I.L., Rego A.C. Dysfunctional synapse in Alzheimer’s disease—A focus on NMDA receptors. Neuropharmacology. 2014;76:16–26. doi: 10.1016/j.neuropharm.2013.08.013. PubMed DOI

Rotaru D.C., Yoshino H., Lewis D.A., Ermentrout G.B., Gonzalez-Burgos G. Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: Relevance for Schizophrenia. J. Neurosci. 2011;31:142–156. doi: 10.1523/JNEUROSCI.1970-10.2011. PubMed DOI PMC

Zhou X., Ding Q., Chen Z., Yun H., Wang H. Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J. Biol. Chem. 2013;288:24151–24159. doi: 10.1074/jbc.M113.482000. PubMed DOI PMC

Baulieu E.E. Neurosteroids: A novel function of the brain. Psychoneuroendocrinology. 1998;23:963–987. doi: 10.1016/S0306-4530(98)00071-7. PubMed DOI

Korinek M., Kapras V., Vyklicky V., Adamusova E., Borovska J., Vales K., Stuchlik A., Horak M., Chodounska H., Vyklicky L. Neurosteroid modulation of N-methyl-D-aspartate receptors: Molecular mechanism and behavioral effects. Steroids. 2011;76:1409–1418. doi: 10.1016/j.steroids.2011.09.002. PubMed DOI

Karssen A.M. Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology. 2001;142:2686–2694. doi: 10.1210/endo.142.6.8213. PubMed DOI

Peng R., Zhang H., Zhang Y., Wei D.-Y. Effects of the ABCB1 (1199G > A) polymorphism on steroid sex hormone-induced P-glycoprotein expression, ATPase activity, and hormone efflux. Med. Sci. 2015;3:124–137. doi: 10.3390/medsci3040124. PubMed DOI PMC

Miyajima M., Kusuhara H., Fujishima M., Adachi Y., Sugiyama Y. Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood-brain barrier in mice. Drug Metab. Dispos. 2011;39:814–819. doi: 10.1124/dmd.110.036863. PubMed DOI

Ducharme N., Banks W.A., Morley J.E., Robinson S.M., Niehoff M.L., Mattern C. Brain distribution and behavioral effects of progesterone and pregnenolone after intranasal or intravenous administration. Eur. J. Pharmacol. 2010;641:128–134. doi: 10.1016/j.ejphar.2010.05.033. PubMed DOI PMC

Adla S.K., Slavikova B., Smidkova M., Tloustova E., Svoboda M., Vyklicky V., Krausova B., Hubalkova P., Nekardova M., Holubova K., et al. Physicochemical and biological properties of novel amide-based steroidal inhibitors of NMDA receptors. Steroids. 2017;117:52–61. doi: 10.1016/j.steroids.2016.08.010. PubMed DOI

Adla S.K., Slavikova B., Chodounska H., Vyklicky V., Ladislav M., Hubalkova P., Krausova B., Smejkalova T., Nekardova M., Smidkova M., et al. Strong inhibitory effect, low cytotoxicity and high plasma stability of steroidal inhibitors of N-methyl-D-aspartate receptors with C-3 amide structural motif. Front. Pharmacol. 2018;9:1299. doi: 10.3389/fphar.2018.01299. PubMed DOI PMC

Markowicz-Piasecka M., Huttunen J., Montaser A., Adla S.K., Auriola S., Lehtonen M., Huttunen K.M. Ganciclovir and its hemocompatible more lipophilic derivative can enhance the apoptotic effects of methotrexate by inhibiting breast cancer resistance protein (BCRP) Int. J. Mol. Sci. 2021;22:7727. doi: 10.3390/ijms22147727. PubMed DOI PMC

Huttunen J., Gynther M., Vellonen K.-S., Huttunen K.M. L-type amino acid transporter 1 (LAT1)-utilizing prodrugs are carrier-selective despite having low affinity for organic anion transporting polypeptides (OATPs) Int. J. Pharm. 2019;571:118714. doi: 10.1016/j.ijpharm.2019.118714. PubMed DOI

Hutzler J.M., Tracy T.S. Atypical kinetic profiles in drug metabolism reactions. Drug Metab. Dispos. 2002;30:355–362. doi: 10.1124/dmd.30.4.355. PubMed DOI

Lee W., Glaeser H., Smith L.H., Roberts R.L., Moeckel G.W., Gervasini G., Leake B.F., Kim R.B. Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2) J. Biol. Chem. 2005;280:9610–9617. doi: 10.1074/jbc.M411092200. PubMed DOI

Zhou Y., Yuan J., Li Z., Wang Z., Cheng D., Du Y., Li W., Kan Q., Zhang W. Genetic polymorphisms and function of the organic anion-transporting polypeptide 1A2 and its clinical relevance in drug disposition. Pharmacology. 2015;95:201–208. doi: 10.1159/000381313. PubMed DOI

Wang X., Chen J., Xu S., Ni C., Fang Z., Hong M. Amino-terminal region of human organic anion transporting polypeptide 1B1 dictates transporter stability and substrate interaction. Toxicol. Appl. Pharmacol. 2019;378:114642. doi: 10.1016/j.taap.2019.114642. PubMed DOI

Glaeser H., Mandery K., Sticht H., Fromm M., König J. Relevance of conserved lysine and arginine residues in transmembrane helices for the transport activity of organic anion transporting polypeptide 1B3. Br. J. Pharmacol. 2010;159:698–708. doi: 10.1111/j.1476-5381.2009.00568.x. PubMed DOI PMC

Banerjee N., Allen C., Bendayan R. Differential role of organic anion-transporting polypeptides in estrone-3-sulphate uptake by breast epithelial cells and breast cancer cells. J. Pharmacol. Exp. Ther. 2012;342:510–519. doi: 10.1124/jpet.112.192344. PubMed DOI

Kounnis V., Chondrogiannis G., Mantzaris M.D., Tzakos A.G., Fokas D., Papanikolaou N.A., Galani V., Sainis I., Briasoulis E. Microcystin LR shows cytotoxic activity against pancreatic cancer cells expressing the membrane OATP1B1 and OATP1B3 transporters. Anticancer Res. 2015;35:5857–5865. PubMed

Gong I.Y., Kim R.B. Impact of genetic variation in OATP transporters to drug disposition and response. Drug Metab. Pharmacokinet. 2013;28:4–18. doi: 10.2133/dmpk.DMPK-12-RV-099. PubMed DOI

Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J.Y., Wang L., Lupyan D., Dahlgren M.K., Knight J.L., et al. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 2016;12:281–296. doi: 10.1021/acs.jctc.5b00864. PubMed DOI

Schrödinger Release 2019-4: SiteMap. Schrödinger, LLC; New York, NY, USA: 2019.

Halgren T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 2009;49:377–389. doi: 10.1021/ci800324m. PubMed DOI

Schrödinger Release 2019-4: LigPrep. Schrödinger, LLC; New York, NY, USA: 2019.

Shelley J.C., Cholleti A., Frye L.L., Greenwood J.R., Timlin M.R., Uchimaya M. Epik: A software program for PK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007;21:681–691. doi: 10.1007/s10822-007-9133-z. PubMed DOI

Schrödinger Release 2019-4: MacroModel. Schrödinger, LLC; New York, NY, USA: 2019.

Schrödinger Release 2019-4: Desmond Molecular Dynamics System. D.E. Shaw Research; New York, NY, USA: Schrödinger; New York, NY, USA: 2019. Maestro-Desmond Interoperability Tools.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...