Comparative Modelling of Organic Anion Transporting Polypeptides: Structural Insights and Comparison of Binding Modes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Excellence strategy of the German Federal and State Governments
Federal Ministry of Education and Research
338693
Academy of Finland
2020-2022
Sigrid Jusélius Foundation
European Social Fund -OP RDE Project IOCB MSCA Mobility IV, No. CZ.02.2.69/0.0/0.0/20_079/0017783
European Union
PubMed
36500622
PubMed Central
PMC9738416
DOI
10.3390/molecules27238531
PII: molecules27238531
Knihovny.cz E-zdroje
- Klíčová slova
- Solute-Carrier O (SLCO), homology models, molecular dynamics simulations, organic anion transporting polypeptides (OATPs), xenobiotic transporters,
- MeSH
- biologický transport MeSH
- přenašeče organických aniontů * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- přenašeče organických aniontů * MeSH
To better understand the functionality of organic anion transporting polypeptides (OATPs) and to design new ligands, reliable structural data of each OATP is needed. In this work, we used a combination of homology model with molecular dynamics simulations to generate a comprehensive structural dataset, that encompasses a diverse set of OATPs but also their relevant conformations. Our OATP models share a conserved transmembrane helix folding harbouring a druggable binding pocket in the shape of an inner pore. Our simulations suggest that the conserved salt bridges at the extracellular region between residues on TM1 and TM7 might influence the entrance of substrates. Interactions between residues on TM1 and TM4 within OATP1 family shown their importance in transport of substrates. Additionally, in transmembrane (TM) 1/2, a known conserved element, interact with two identified motifs in the TM7 and TM11. Our simulations suggest that TM1/2-TM7 interaction influence the inner pocket accessibility, while TM1/2-TM11 salt bridges control the substrate binding stability.
Zobrazit více v PubMed
Hagenbuch B., Meier P. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta-Biomembr. 2003;1609:1–18. doi: 10.1016/S0005-2736(02)00633-8. PubMed DOI
Meyer zu Schwabedissen H.E., Tirona R.G., Yip C.S., Ho R.H., Kim R.B. Interplay between the Nuclear Receptor Pregnane X Receptor and the Uptake Transporter Organic Anion Transporter Polypeptide 1A2 Selectively Enhances Estrogen Effects in Breast Cancer. Cancer Res. 2008;68:9338–9347. doi: 10.1158/0008-5472.CAN-08-0265. PubMed DOI PMC
Murray M., Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br. J. Pharmacol. 2017;174:1908–1924. doi: 10.1111/bph.13785. PubMed DOI PMC
Roth M., Obaidat A., Hagenbuch B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol. 2012;165:1260–1287. doi: 10.1111/j.1476-5381.2011.01724.x. PubMed DOI PMC
McFeely S.J., Ritchie T.K., Yu J., Nordmark A., Levy R.H., Ragueneau-Majlessi I. Identification and Evaluation of Clinical Substrates of Organic Anion Transporting Polypeptides 1B1 and 1B3. Clin. Transl. Sci. 2019;12:379–387. doi: 10.1111/cts.12623. PubMed DOI PMC
European Medicines Agency . Guideline on the Investigation of Drug Interactions. Committee for Human Medicinal Products (CHMP); Amsterdam, The Netherlands: 2012.
US Food and Drug Administration (FDA) Guidance for Industry: Drug Interaction Studies—Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations. Center for Drug Evaluation and Research (CDER), FDA; Silver Spring, MD, USA: 2012. pp. 1–75.
Tamai I., Nezu J.I., Uchino H., Sai Y., Oku A., Shimane M., Tsuji A. Molecular Identification and Characterization of Novel Members of the Human Organic Anion Transporter (OATP) Family. Biochem. Biophys. Res. Commun. 2000;273:251–260. doi: 10.1006/bbrc.2000.2922. PubMed DOI
Hagenbuch B., Meier P.J. Organic anion transporting polypeptides of the OATP/ SLC21 family: Phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. Eur. J. Physiol. 2004;447:653–665. doi: 10.1007/s00424-003-1168-y. PubMed DOI
Kullak-Ublick G.A., Hagenbuch B., Stieger B., Schteingart C.D., Hofmann A.F., Wolkoff A.W., Meier P.J. Molecular and functional characterization of an organic anion transporting polypeptide cloned from human liver. Gastroenterology. 1995;109:1274–1282. doi: 10.1016/0016-5085(95)90588-X. PubMed DOI
Ronaldson P.T., Davis T.P. Targeted drug delivery to treat pain and cerebral hypoxia. Pharmacol. Rev. 2013;65:291–314. doi: 10.1124/pr.112.005991. PubMed DOI PMC
Williams E.I., Betterton R.D., Davis T.P., Ronaldson P.T. Transporter-mediated delivery of small molecule drugs to the brain: A critical mechanism that can advance therapeutic development for ischemic stroke. Pharmaceutics. 2020;12:154. doi: 10.3390/pharmaceutics12020154. PubMed DOI PMC
Yu J., Zhou Z., Tay-Sontheimer J., Levy R.H., Ragueneau-Majlessi I. Intestinal Drug Interactions Mediated by OATPs: A Systematic Review of Preclinical and Clinical Findings. J. Pharm. Sci. 2017;106:2312–2325. doi: 10.1016/j.xphs.2017.04.004. PubMed DOI
Lee W., Glaeser H., Smith L.H., Roberts R.L., Moeckel G.W., Gervasini G., Leake B.F., Kim R.B. Polymorphisms in Human Organic Anion-transporting Polypeptide 1A2 (OATP1A2): Implications for altered drug disposition and central nervous system drug entry. J. Biol. Chem. 2005;280:9610–9617. doi: 10.1074/jbc.M411092200. PubMed DOI
Niemi M. Role of OATP transporters in the disposition of drugs. Pharmacogenomics. 2007;8:787–802. doi: 10.2217/14622416.8.7.787. PubMed DOI
Smith N.F., Acharya M.R., Desai N., Figg W., II, Sparreboom A. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol. Ther. 2005;4:815–818. doi: 10.4161/cbt.4.8.1867. PubMed DOI
Kinzi J., Grube M., Zu Schwabedissen H.E.M. OATP2B1—The underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem. Pharmacol. 2021;188:114534. doi: 10.1016/j.bcp.2021.114534. PubMed DOI
Zhou Y., Yuan J., Li Z., Wang Z., Cheng D., Du Y., Li W., Kan Q., Zhang W. Genetic Polymorphisms and Function of the Organic Anion-Transporting Polypeptide 1A2 and Its Clinical Relevance in Drug Disposition. Pharmacology. 2015;95:201–208. doi: 10.1159/000381313. PubMed DOI
Franke R.M., Scherkenbach L.A., Sparreboom A. Pharmacogenetics of the organic anion transporting polypeptide 1A2,”. Pharmacogenomics. 2009;10:339–344. doi: 10.2217/14622416.10.3.339. PubMed DOI PMC
Hänggi E., Grundschober A.F., Leuthold S., Meier P.J., St-Pierre M.V. Functional Analysis of the Extracellular Cysteine Residues in the Human Organic Anion Transporting Polypeptide, OATP2B1. Mol. Pharmacol. 2006;70:806–817. doi: 10.1124/mol.105.019547. PubMed DOI
Taylor-Wells J., Meredith D. The Signature Sequence Region of the Human Drug Transporter Organic Anion Transporting Polypeptide 1B1 Is Important for Protein Surface Expression. J. Drug Deliv. 2014;2014:1–10. doi: 10.1155/2014/129849. PubMed DOI PMC
Yao J., Hong W., Huang J., Zhan K., Huang H., Hong M. N-glycosylation Dictates Proper Processing of Organic Anion Transporting Polypeptide 1B1. PLoS ONE. 2012;7:e52563. doi: 10.1371/journal.pone.0052563. PubMed DOI PMC
Mandery K., Sticht H., Bujok K., Schmidt I., Fahrmayr C., Balk B., Fromm M.F., Glaeser H. Functional and Structural Relevance of Conserved Positively Charged Lysine Residues in Organic Anion Transporting Polypeptide 1B3. Mol. Pharmacol. 2011;80:400–406. doi: 10.1124/mol.111.071282. PubMed DOI
Strømme P., Groeneweg S., Lima de Souza E.C., Zevenbergen C., Torgersbråten A., Holmgren A., Gurcan E., Meima M.E., Peeters R.P., Visser W.E., et al. Mutated Thyroid Hormone Transporter OATP1C1 Associates with Severe Brain Hypometabolism and Juvenile Neurodegeneration. Thyroid. 2018;28:1406–1415. doi: 10.1089/thy.2018.0595. PubMed DOI
Li N., Hong W., Huang H., Lu H., Lin G., Hong M. Identification of Amino Acids Essential for Estrone-3-Sulfate Transport within Transmembrane Domain 2 of Organic Anion Transporting Polypeptide 1B1. PLoS ONE. 2012;7:e36647. doi: 10.1371/journal.pone.0036647. PubMed DOI PMC
Hong W., Wu Z., Fang Z., Huang J., Huang H., Hong M. Amino Acid Residues in the Putative Transmembrane Domain 11 of Human Organic Anion Transporting Polypeptide 1B1 Dictate Transporter Substrate Binding, Stability, and Trafficking. Mol. Pharm. 2015;12:4270–4276. doi: 10.1021/acs.molpharmaceut.5b00466. PubMed DOI
Glaeser H., Mandery K., Sticht H., Fromm M., König J. Relevance of conserved lysine and arginine residues in transmembrane helices for the transport activity of organic anion transporting polypeptide 1B3. Br. J. Pharmacol. 2010;159:698–708. doi: 10.1111/j.1476-5381.2009.00568.x. PubMed DOI PMC
Lin S., Ke M., Zhang Y., Yan Z., Wu J. Structure of a mammalian sperm cation channel complex. Nature. 2021;595:746–750. doi: 10.1038/s41586-021-03742-6. PubMed DOI
Lee W., Ha J., Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion–transporting polypeptides. J. Biol. Chem. 2020;295:17349–17364. doi: 10.1074/jbc.REV120.009132. PubMed DOI PMC
Halgren T.A. Identifying and Characterizing Binding Sites and Assessing Druggability. J. Chem. Inf. Model. 2009;49:377–389. doi: 10.1021/ci800324m. PubMed DOI
Meier-Abt F., Mokrab Y., Mizuguchi K. Organic Anion Transporting Polypeptides of the OATP/SLCO Superfamily: Identification of New Members in Nonmammalian Species, Comparative Modeling and a Potential Transport Mode. J. Membr. Biol. 2006;208:213–227. doi: 10.1007/s00232-005-7004-x. PubMed DOI
Tuerkova A., Ungvári O., Laczkó-Rigó R., Mernyák E., Szakács G., Özvegy-Laczka C., Zdrazil B. Data-Driven Ensemble Docking to Map Molecular Interactions of Steroid Analogs with Hepatic Organic Anion Transporting Polypeptides. J. Chem. Inf. Model. 2021;61:3109–3127. doi: 10.1021/acs.jcim.1c00362. PubMed DOI PMC
Weaver Y.M., Hagenbuch B. Several Conserved Positively Charged Amino Acids in OATP1B1 are Involved in Binding or Translocation of Different Substrates. J. Membr. Biol. 2010;236:279–290. doi: 10.1007/s00232-010-9300-3. PubMed DOI PMC
Wang X., Chen J., Xu S., Ni C., Fang Z., Hong M. Amino-terminal region of human organic anion transporting polypeptide 1B1 dictates transporter stability and substrate interaction. Toxicol. Appl. Pharmacol. 2019;378:114642. doi: 10.1016/j.taap.2019.114642. PubMed DOI
Badagnani I., Castro R.A., Taylor T.R., Brett C.M., Huang C.C., Stryke D., Kawamoto M., Johns S.J., Ferrin T.E., Carlson E.J., et al. Interaction of Methotrexate with Organic-Anion Transporting Polypeptide 1A2 and Its Genetic Variants. J. Pharmacol. Exp. Ther. 2006;318:521–529. doi: 10.1124/jpet.106.104364. PubMed DOI
Adla S.K., Tonduru A.K., Kronenberger T., Kudova E., Poso A., Huttunen K.M. Neurosteroids: Structure-Uptake Relationships and Computational Modeling of Organic Anion Transporting Polypeptides (OATP)1A2. Molecules. 2021;26:5662. doi: 10.3390/molecules26185662. PubMed DOI PMC
Tuerkova A., Bongers B.J., Norinder U., Ungvári O., Székely V., Tarnovskiy A., Szakács G., Özvegy-Laczka C., van Westen G.J., Zdrazil B. Identifying Novel Inhibitors for Hepatic Organic Anion Transporting Polypeptides by Machine Learning-Based Virtual Screening. J. Chem. Inf. Model. 2022 doi: 10.1021/acs.jcim.1c01460. PubMed DOI PMC
Lee G.R., Won J., Heo L., Seok C. GalaxyRefine2: Simultaneous refinement of inaccurate local regions and overall protein structure. Nucleic Acids Res. 2019;47:W451–W455. doi: 10.1093/nar/gkz288. PubMed DOI PMC
Mak L., Marcus D., Howlett A., Yarova G., Duchateau G., Klaffke W., Bender A., Glen R.C. Metrabase: A cheminformatics and bioinformatics database for small molecule transporter data analysis and (Q)SAR modeling. J. Cheminform. 2015;7:1–12. doi: 10.1186/s13321-015-0083-5. PubMed DOI PMC
Davies M., Nowotka M., Papadatos G., Dedman N., Gaulton A., Atkinson F., Bellis L., Overington J.P. ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015;43:W612–W620. doi: 10.1093/nar/gkv352. PubMed DOI PMC
Schrödinger Release 2019-4: LigPrep, Schrödinger. LLC; New York, NY, USA: 2019.
Schrödinger Release 2019-4: Epik. LLC; New York, NY, USA: 2019. Schrödinger.
Shelley J.C., Cholleti A., Frye L.L., Greenwood J.R., Timlin M.R., Uchimaya M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput. Aided. Mol. Des. 2007;21:681–691. doi: 10.1007/s10822-007-9133-z. PubMed DOI
Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J.Y., Wang L., Lupyan D., Dahlgren M.K., Knight J.L., et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016;12:281–296. doi: 10.1021/acs.jctc.5b00864. PubMed DOI
Schrödinger Release 2019-4: MacroModel, Schrödinger. LLC; New York, NY, USA: 2019.
Schrödinger Release 2019-4: Protein Preparation Wizard. LLC; New York, NY, USA: 2016. Epik, Schrödinger.
Schrödinger Release 2019-4: SiteMap, Schrödinger. LLC; New York, NY, USA: 2019.
Halgren T. New Method for Fast and Accurate Binding-site Identification and Analysis. Chem. Biol. Drug Des. 2007;69:146–148. doi: 10.1111/j.1747-0285.2007.00483.x. PubMed DOI
LLC . Schrödinger Release 2019-4: Glide, Schrödinger. LLC; New York, NY, USA: 2019.
Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI
Schrödinger Release 2019-4: Desmond Molecular Dynamics System. D. E. Shaw Research; New York, NY, USA: Schrödinger; New York, NY, USA: 2019. Maestro-Desmond Interoperability Tools.
Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984;81:511–519. doi: 10.1063/1.447334. DOI
Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI
Pellegrini-Calace M., Maiwald T., Thornton J.M. PoreWalker: A Novel Tool for the Identification and Characterization of Channels in Transmembrane Proteins from Their Three-Dimensional Structure. PLoS Comput. Biol. 2009;5:e1000440. doi: 10.1371/journal.pcbi.1000440. PubMed DOI PMC