Ganciclovir and Its Hemocompatible More Lipophilic Derivative Can Enhance the Apoptotic Effects of Methotrexate by Inhibiting Breast Cancer Resistance Protein (BCRP)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
294227, 294229, 307057, 311939
Academy of Finland
503/3-015-01/503-31-001-19-00
Uniwersytet Medyczny w Lodzi
CZ.02.2.69/0.0/0.0/20_079/0017783
European Social Fund
Biocenter Kuopio
Biocenter Finland
PubMed
34299347
PubMed Central
PMC8303380
DOI
10.3390/ijms22147727
PII: ijms22147727
Knihovny.cz E-zdroje
- Klíčová slova
- MCF-7/MDA-MB-231 human breast cancer cells, breast cancer resistant protein (BCRP), ganciclovir (GCV), methotrexate (MTX), multidrug resistance (MDR),
- MeSH
- ABC transportér z rodiny G, člen 2 metabolismus MeSH
- antivirové látky farmakologie MeSH
- apoptóza účinky léků MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- ganciklovir farmakologie MeSH
- lidé MeSH
- methotrexát farmakologie MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- nádorové proteiny metabolismus MeSH
- nádory prsu farmakoterapie metabolismus MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům metabolismus MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportér z rodiny G, člen 2 MeSH
- ABCG2 protein, human MeSH Prohlížeč
- antivirové látky MeSH
- ganciklovir MeSH
- methotrexát MeSH
- nádorové proteiny MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům MeSH
Efflux transporters, namely ATP-binding cassette (ABC), are one of the primary reasons for cancer chemoresistance and the clinical failure of chemotherapy. Ganciclovir (GCV) is an antiviral agent used in herpes simplex virus thymidine kinase (HSV-TK) gene therapy. In this therapy, HSV-TK gene is delivered together with GCV into cancer cells to activate the phosphorylation process of GCV to active GCV-triphosphate, a DNA polymerase inhibitor. However, GCV interacts with efflux transporters that are responsible for the resistance of HSV-TK/GCV therapy. In the present study, it was explored whether GCV and its more lipophilic derivative (1) could inhibit effluxing of another chemotherapeutic, methotrexate (MTX), out of the human breast cancer cells. Firstly, it was found that the combination of GCV and MTX was more hemocompatible than the corresponding combination with compound 1. Secondly, both GCV and compound 1 enhanced the cellular accumulation of MTX in MCF-7 cells, the MTX exposure being 13-21 times greater compared to the MTX uptake alone. Subsequently, this also reduced the number of viable cells (41-56%) and increased the number of late apoptotic cells (46-55%). Moreover, both GCV and compound 1 were found to interact with breast cancer resistant protein (BCRP) more effectively than multidrug-resistant proteins (MRPs) in these cells. Since the expression of BCRP was higher in MCF-7 cells than in MDA-MB-231 cells, and the cellular uptake of GCV and compound 1 was smaller but increased in the presence of BCRP-selective inhibitor (Fumitremorgin C) in MCF-7 cells, we concluded that the improved apoptotic effects of higher MTX exposure were raised mainly from the inhibition of BCRP-mediated efflux of MTX. However, the effects of GCV and its derivatives on MTX metabolism and the quantitative expression of MTX metabolizing enzymes in various cancer cells need to be studied more thoroughly in the future.
Zobrazit více v PubMed
Xue X., Liang X.J. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin. J. Cancer. 2012;31:100–109. doi: 10.5732/cjc.011.10326. PubMed DOI PMC
Szakács G., Paterson J.K., Ludwig J.A., Booth-Genthe C., Gottesman M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006;5:219–234. doi: 10.1038/nrd1984. PubMed DOI
Li W., Zhang H., Assaraf Y.G., Zhao K., Xu X., Xie J., Yang D.H., Chen Z.S. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updates. 2016;27:14–29. doi: 10.1016/j.drup.2016.05.001. PubMed DOI
Callaghan R., Luk F., Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab. Dispos. 2014;42:623–631. doi: 10.1124/dmd.113.056176. PubMed DOI PMC
Wang J.Q., Yang Y., Cai C.Y., Teng Q.X., Cui Q., Lin J., Assaraf Y.G., Chen Z.S. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updates. 2021;54:100743. doi: 10.1016/j.drup.2021.100743. PubMed DOI
Littler E., Stuart A.D., Chee M.S. Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature. 1992;358:160–162. doi: 10.1038/358160a0. PubMed DOI
Reardon J.E. Herpes simplex virus type 1 and human DNA polymerase interactions with 2’-deoxyguanosine 5’-triphosphate analogues. Kinetics of incorporation into DNA and induction of inhibition. J. Biol. Chem. 1989;264:19039–19044. doi: 10.1016/S0021-9258(19)47263-3. PubMed DOI
Sullivan V., Talarico C.L., Stanat S.C., Davis M., Coen D.M., Biron K.K. A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature. 1992;358:162–164. doi: 10.1038/358162a0. PubMed DOI
Westphal M., Ylä-Herttuala S., Martin J., Warnke P., Menei P., Eckland D., Kinley J., Kay R., Ram Z., ASPECT Study Group Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): A randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14:823–833. doi: 10.1016/S1470-2045(13)70274-2. PubMed DOI
Pulkkanen K.J., Yla-Herttuala S. Gene therapy for malignant glioma: Current clinical status. Mol. Ther. 2005;12:585–598. doi: 10.1016/j.ymthe.2005.07.357. PubMed DOI
Tobias A., Ahmed A., Moon K.S., Lesniak M.S. The art of gene therapy for glioma: A review of the challenging road to the bedside. J. Neurol. Neurosurg. Psychiatry. 2013;84:213–222. doi: 10.1136/jnnp-2012-302946. PubMed DOI PMC
Gynther M., Kääriäinen T.M., Hakkarainen J.J., Jalkanen A.J., Petsalo A., Lehtonen M., Peura L., Kurkipuro J., Samaranayake H., Ylä-Herttuala S., et al. Brain pharmacokinetics of ganciclovir in rats with orthotopic BT4C glioma. Drug Metab. Dispos. 2015;43:140–146. doi: 10.1124/dmd.114.059840. PubMed DOI
Adachi M., Sampath J., Lan L.B., Sun D., Hargrove P., Flatley R., Tatum A., Edwards M.Z., Wezeman M., Matherly L., et al. Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J. Biol. Chem. 2002;277:38998–39004. doi: 10.1074/jbc.M203262200. PubMed DOI
Chen Z.S., Lee K., Walther S., Raftogianis R.B., Kuwano M., Zeng H., Kruh G.D. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res. 2002;62:3144–3150. PubMed
Takeuchi K., Shibata M., Kashiyama E., Umehara K. Expression levels of multidrug resistance-associated protein 4 (MRP4) in human leukemia and lymphoma cell lines, and the inhibitory effects of the MRP-specific inhibitor MK-571 on methotrexate distribution in rats. Exp. Ther. Med. 2012;4:524–532. doi: 10.3892/etm.2012.627. PubMed DOI PMC
Wang W., Li Y., Zhu J.Y., Fang D., Ding H.F., Dong Z., Jing Q., Su S.B., Huang S. Triple negative breast cancer development can be selectively suppressed by sustaining an elevated level of cellular cyclic AMP through simultaneously blocking its efflux and decomposition. Oncotarget. 2016;7:87232–87245. doi: 10.18632/oncotarget.13601. PubMed DOI PMC
Kochel T.J., Reader J.C., Ma X., Kundu N., Fulton A.M. Multiple drug resistance-associated protein (MRP4) exports prostaglandin E2 (PGE2) and contributes to metastasis in basal/triple negative breast cancer. Oncotarget. 2017;8:6540–6554. doi: 10.18632/oncotarget.14145. PubMed DOI PMC
Decout J.-L., Alvarenga F.R., Kempf J., Dezanet C., Andrei G., Snoeck R. Novel Purine Derivatives and Drugs Comprising Same. WO 2020157626. PCT International Application. 2020 Aug 6;:41.
Dawids S. Test Procedures for the Blood Compatibility of Biomaterials. Springer Science+Business Media, B.V; Berlin/Heidelberg, Germany: 1993.
Zhou H.Y., Zhang Y.P., Zhang W.F., Chen X.G. Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr. Polym. 2011;83:1643–1651. doi: 10.1016/j.carbpol.2010.10.022. DOI
Doyle L.A., Ross D.D. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2) Oncogene. 2003;22:7340–7358. doi: 10.1038/sj.onc.1206938. PubMed DOI
Furukawa J., Inoue K., Ohta K., Yasujima T., Mimura Y., Yuasa H. Role of Equilibrative Nucleobase Transporter 1/SLC43A3 as a Ganciclovir Transporter in the Induction of Cytotoxic Effect of Ganciclovir in a Suicide Gene Therapy with Herpes Simplex Virus Thymidine Kinase. J. Pharmacol. Exp. Ther. 2017;360:59–68. doi: 10.1124/jpet.116.236984. PubMed DOI
Cheng Y., Vapurcuyan A., Shahidullah M., Aleksunes L.M., Pelis R.M. Expression of organic anion transporter 2 in the human kidney and its potential role in the tubular secretion of guanine-containing antiviral drugs. Drug Metab. Dispos. 2012;40:617–624. doi: 10.1124/dmd.111.042036. PubMed DOI
Tanihara Y., Masuda S., Sato T., Katsura T., Ogawa O., Inui K.I. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem. Pharmacol. 2007;74:359–371. doi: 10.1016/j.bcp.2007.04.010. PubMed DOI
Takeda M., Khamdang S., Narikawa S., Kimura H., Kobayashi Y., Yamamoto T., Cha S.H., Sekine T., Endou H. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J. Pharmacol. Exp. Ther. 2002;300:918–924. doi: 10.1124/jpet.300.3.918. PubMed DOI
Ikemura K., Hiramatsu S.I., Shinogi Y., Nakatani Y., Tawara I., Iwamoto T., Katayama N., Okuda M. Concomitant febuxostat enhances methotrexate-induced hepatotoxicity by inhibiting breast cancer resistance protein. Sci. Rep. 2019;9:20359. doi: 10.1038/s41598-019-56900-2. PubMed DOI PMC
Breedveld P., Zelcer N., Pluim D., Sönmezer Ö., Tibben M.M., Beijnen J.H., Schinkel A.H., van Tellingen O., Borst P., Schellens J.H. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: Potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res. 2004;64:5804–5811. doi: 10.1158/0008-5472.CAN-03-4062. PubMed DOI
Sarkadi B., Homolya L., Hegedűs T. The ABCG2/BCRP transporter and its variants—From structure to pathology. FEBS Lett. 2020;594:4012–4034. doi: 10.1002/1873-3468.13947. PubMed DOI
Banik A., Ghosh K., Patil U.K., Gayen S. Identification of molecular fingerprints of natural products for the inhibition of breast cancer resistance protein (BCRP) Phytomedicine. 2021;85:153523. doi: 10.1016/j.phymed.2021.153523. PubMed DOI
Kowal J., Ni D., Jackson S.M., Manolaridis I., Stahlberg H., Locher K.P. Structural Basis of Drug Recognition by the Multidrug Transporter ABCG2. J. Mol. Biol. 2021;433:166980. doi: 10.1016/j.jmb.2021.166980. PubMed DOI
De Wolf C., Jansen R., Yamaguchi H., De Haas M., Van De Wetering K., Wijnholds J., Beijnen J., Borst P. Contribution of the drug transporter ABCG2 (breast cancer resistance protein) to resistance against anticancer nucleosides. Mol. Cancer Ther. 2008;7:3092–3102. doi: 10.1158/1535-7163.MCT-08-0427. PubMed DOI
Hu W., Liu W. Side populations of glioblastoma cells are less sensitive to HSV-TK/GCV suicide gene therapy system than the non-side population. In Vitro Cell Dev. Biol. Anim. 2010;46:497–501. doi: 10.1007/s11626-010-9274-6. PubMed DOI
Zhao R., Goldman I.D. Resistance to antifolates. Oncogene. 2003;22:7431–7457. doi: 10.1038/sj.onc.1206946. PubMed DOI
Volk E.L., Rohde K., Rhee M., McGuire J.J., Doyle L.A., Ross D.D., Schneider E. Methotrexate cross-resistance in a mitoxantrone-selected multidrug-resistant MCF7 breast cancer cell line is attributable to enhanced energy-dependent drug efflux. Cancer Res. 2000;60:3514–3521. PubMed
Depau L., Brunetti J., Falciani C., Scali S., Riolo G., Mandarini E., Pini A., Bracci L. Coupling to a cancer-selective heparan-sulfate-targeted branched peptide can by-pass breast cancer cell resistance to methotrexate. Oncotarget. 2017;8:76141–76152. doi: 10.18632/oncotarget.19056. PubMed DOI PMC
Uchida Y., Tachikawa M., Obuchi W., Hoshi Y., Tomioka Y., Ohtsuki S., Terasaki T. A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: Application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood-brain barrier in ddY, FVB, and C57BL/6J mice. Fluids Barriers CNS. 2013;10:21. PubMed PMC
Montaser A.B., Jarvinen J., Löffler S., Huttunen J., Auriola S., Lehtonen M., Jalkanen A., Huttunen K.M. L-Type Amino Acid Transporter 1 Enables the Efficient Brain Delivery of Small-Sized Prodrug across the Blood-Brain Barrier and into Human and Mouse Brain Parenchymal Cells. ACS Chem. Neurosci. 2020;11:4301–4315. doi: 10.1021/acschemneuro.0c00564. PubMed DOI
Huttunen J., Gynther M., Huttunen K.M. Targeted efflux transporter inhibitors—A solution to improve poor cellular accumulation of anti-cancer agents. Int. J. Pharm. 2018;550:278–289. doi: 10.1016/j.ijpharm.2018.08.047. PubMed DOI
Markowicz-Piasecka M., Huttunen J., Sikora J., Huttunen K.M. Sulfenamide derivatives can improve transporter-mediated cellular uptake of metformin and induce cytotoxicity in human breast adenocarcinoma cell lines. Bioorg. Chem. 2019;87:321–334. doi: 10.1016/j.bioorg.2019.03.036. PubMed DOI
Markowicz-Piasecka M., Sikora J., Mateusiak Ł., Mikiciuk-Olasik E., Huttunen K.M. New prodrugs of metformin do not influence the overall haemostasis potential and integrity of the erythrocyte membrane. Eur. J. Pharmacol. 2017;811:208–221. doi: 10.1016/j.ejphar.2017.06.011. PubMed DOI
Markowicz-Piasecka M., Huttunen K.M., Mikiciuk-Olasik E., Sikora J. Biocompatible sulfenamide and sulfonamide derivatives of metformin can exert beneficial effects on plasma haemostasis. Chem. Biol. Interact. 2018;280:15–27. doi: 10.1016/j.cbi.2017.12.005. PubMed DOI