Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26086919
PubMed Central
PMC4471902
DOI
10.1038/srep10935
PII: srep10935
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- lidé MeSH
- mutace * MeSH
- pregnanolon * chemie metabolismus MeSH
- receptory N-methyl-D-aspartátu * antagonisté a inhibitory chemie genetika metabolismus MeSH
- vestibulární aparát * chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- pregnanolon * MeSH
- receptory N-methyl-D-aspartátu * MeSH
N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system.
Charles University Prague Faculty of Science Albertov 6 128 43 Prague 2 Czech Republic
Institute of Chemical Technology Prague Technicka 5 166 28 Prague Czech Republic
Institute of Organic Chemistry and Biochemistry CAS Flemingovo nam 2 166 10 Prague 2 Czech Republic
Institute of Physiology CAS Videnska 1083 142 20 Prague 4 Czech Republic
Zobrazit více v PubMed
Lynch M. A. Long-term potentiation and memory. Physiological reviews 84, 87–136 (2004). PubMed
Traynelis S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacological reviews 62, 405–496 (2010). PubMed PMC
Mota S. I., Ferreira I. L. & Rego A. C. Dysfunctional synapse in Alzheimer’s disease - A focus on NMDA receptors. Neuropharmacology 76 Pt A, 16–26 (2014). PubMed
Sheng M., Sabatini B. L. & Südhof T. C. Synapses and Alzheimer’s disease. Cold Spring Harb. Perspect. Biol. 4, 1–18 (2012). PubMed PMC
Korinek M. et al. Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects. Steroids 76, 1409–1418 (2011). PubMed
Dubrovsky B. O. Steroids, neuroactive steroids and neurosteroids in psychopathology. Progress in neuro-psychopharmacology & biological psychiatry 29, 169–192 (2005). PubMed
Lapchak P. A. The neuroactive steroid 3-alpha-ol-5-beta-pregnan-20-one hemisuccinate, a selective NMDA receptor antagonist improves behavioral performance following spinal cord ischemia. Brain research 997, 152–158 (2004). PubMed
Weaver C. E. et al. Geometry and charge determine pharmacological effects of steroids on N- methyl-D-aspartate receptor-induced Ca(2+) accumulation and cell death. The Journal of pharmacology and experimental therapeutics 293, 747–754 (2000). PubMed
Rambousek L. et al. Cellular and behavioural effects of a new steroidal inhibitor of the N-methyl-d-aspartate receptor 3alpha5beta-pregnanolone glutamate. Neuropharmacology 61, 61–68 (2011). PubMed
Park-Chung M., Wu F. S. & Farb D. H. 3 alpha-Hydroxy-5 beta-pregnan-20-one sulfate: a negative modulator of the NMDA-induced current in cultured neurons. Molecular pharmacology 46, 146–150 (1994). PubMed
Vales K. et al. 3alpha5beta-Pregnanolone glutamate, a use-dependent NMDA antagonist, reversed spatial learning deficit in an animal model of schizophrenia. Behavioural brain research 235, 82–88 (2012). PubMed
Borovska J. et al. Access of inhibitory neurosteroids to the NMDA receptor. British journal of pharmacology 166, 1069–1083 (2012). PubMed PMC
Petrovic M., Sedlacek M., Horak M., Chodounska H. & Vyklicky L. Jr. 20-oxo-5beta-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. The Journal of neuroscience 25, 8439–8450 (2005). PubMed PMC
Malayev A., Gibbs T. T. & Farb D. H. Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. British journal of pharmacology 135, 901–909 (2002). PubMed PMC
Park-Chung M. et al. Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Molecular pharmacology 52, 1113–1123 (1997). PubMed
Sobolevskii A. I. & Khodorov B. I. Blocker studies of the functional architecture of the NMDA receptor channel. Neuroscience and behavioral physiology 32, 157–171 (2002). PubMed
Kussius C. L., Kaur N. & Popescu G. K. Pregnanolone sulfate promotes desensitization of activated NMDA receptors. The Journal of neuroscience 29, 6819–6827 (2009). PubMed PMC
Chen G. Q., Cui C., Mayer M. L. & Gouaux E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999). PubMed
Smothers C. T. & Woodward J. J. Expression of glycine-activated diheteromeric NR1/NR3 receptors in human embryonic kidney 293 cells Is NR1 splice variant-dependent. The Journal of pharmacology and experimental therapeutics 331, 975–984 (2009). PubMed PMC
Sprengel R. et al. Glutamate receptor channel signatures. Trends Pharmacol Sci 22, 7–10 (2001). PubMed
Sobolevsky A. I., Rosconi M. P. & Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009). PubMed PMC
Sobolevsky A. I., Beck C. & Wollmuth L. P. Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 33, 75–85 (2002). PubMed
Beck C., Wollmuth L. P., Seeburg P. H., Sakmann B. & Kuner T. NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 22, 559–570 (1999). PubMed
Zuo J. et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769–773 (1997). PubMed
Kashiwagi K. et al. Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore. Molecular pharmacology 61, 533–545 (2002). PubMed
Sobolevsky A. I., Prodromou M. L., Yelshansky M. V. & Wollmuth L. P. Subunit-specific contribution of pore-forming domains to NMDA receptor channel structure and gating. The Journal of general physiology 129, 509–525 (2007). PubMed PMC
Chang H. R. & Kuo C. C. The activation gate and gating mechanism of the NMDA receptor. The Journal of neuroscience 28, 1546–1556 (2008). PubMed PMC
Murthy S. E., Shogan T., Page J. C., Kasperek E. M. & Popescu G. K. Probing the activation sequence of NMDA receptors with lurcher mutations. The Journal of general physiology 140, 267–277 (2012). PubMed PMC
Kemp J. A. et al. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc Natl Acad Sci U S A 85, 6547–6550 (1988). PubMed PMC
Evans R. H., Francis A. A., Jones A. W., Smith D. A. & Watkins J. C. The effects of a series of omega-phosphonic alpha-carboxylic amino acids on electrically evoked and excitant amino acid-induced responses in isolated spinal cord preparations. British journal of pharmacology 75, 65–75 (1982). PubMed PMC
Xu M., Smothers C. T., Trudell J. & Woodward J. J. Ethanol inhibition of constitutively open N-methyl-D-aspartate receptors. The Journal of pharmacology and experimental therapeutics 340, 218–226 (2012). PubMed PMC
McNaught A. D. & Wilkinson A. in IUPAC, Compendium of Chemical Terminology, 2nd edn (Blackwell Science, 1997).
Schreier S., Malheiros S. V. & de Paula E. Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim Biophys Acta 1508, 210–234 (2000). PubMed
Vyklicky L. Jr., Krusek J. & Edwards C. Differences in the pore sizes of the N-methyl-D-aspartate and kainate cation channels. Neurosci Lett 89, 313–318 (1988). PubMed
Villarroel A., Burnashev N. & Sakmann B. Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophysical journal 68, 866–875 (1995). PubMed PMC
Zarei M. M. & Dani J. A. Structural basis for explaining open-channel blockade of the NMDA receptor. The Journal of neuroscience 15, 1446–1454 (1995). PubMed PMC
Dai J. & Zhou H. X. An NMDA receptor gating mechanism developed from MD simulations reveals molecular details underlying subunit-specific contributions. Biophysical journal 104, 2170–2181 (2013). PubMed PMC
Kazi R. et al. Asynchronous movements prior to pore opening in NMDA receptors. The Journal of neuroscience 33, 12052–12066 (2013). PubMed PMC
Havlikova H. et al. Serum profiles of free and conjugated neuroactive pregnanolone isomers in nonpregnant women of fertile age. The Journal of clinical endocrinology and metabolism 91, 3092–3099 (2006). PubMed
Kancheva R. et al. Relationships of circulating pregnanolone isomers and their polar conjugates to the status of sex, menstrual cycle, and pregnancy. The Journal of endocrinology 195, 67–78 (2007). PubMed
Baulieu E. E. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res 52, 1–32 (1997). PubMed
Mellon S. H. & Griffin L. D. Synthesis, regulation, and function of neurosteroids. Endocr Res 28, 463 (2002). PubMed
Park-Chung M., Malayev A., Purdy R. H., Gibbs T. T. & Farb D. H. Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain research 830, 72–87 (1999). PubMed
Weaver C. E. Jr., Marek P., Park-Chung M., Tam S. W. & Farb D. H. Neuroprotective activity of a new class of steroidal inhibitors of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 94, 10450–10454 (1997). PubMed PMC
Stastna E. et al. Synthesis of C3, C5, and C7 pregnane derivatives and their effect on NMDA receptor responses in cultured rat hippocampal neurons. Steroids 74, 256–263 (2009). PubMed
Cerny I. et al. Neuroactive steroids with perfluorobenzoyl group. Steroids 77, 1233–1241 (2012). PubMed
Wollmuth L. P. & Sobolevsky A. I. Structure and gating of the glutamate receptor ion channel. Trends in neurosciences 27, 321–328 (2004). PubMed
Kashiwabuchi N. et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81, 245–252 (1995). PubMed
Nowak L., Bregestovski P., Ascher P., Herbet A. & Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465 (1984). PubMed
Mayer M. L., Westbrook G. L. & Guthrie P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984). PubMed
Benveniste M. & Mayer M. L. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. The Journal of physiology 483 (Pt 2), 367–384 (1995). PubMed PMC
Hollmann M. et al. Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943–954 (1993). PubMed
Smothers C. T. & Woodward J. J. Expression of glycine-activated diheteromeric NR1/NR3 receptors in human embryonic kidney 293 cells Is NR1 splice variant-dependent. Journal of Pharmacology and Experimental Therapeutics 331, 975–984 (2009). PubMed PMC
Sucher N. J. et al. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. The Journal of neuroscience 15, 6509–6520 (1995). PubMed PMC
Horak M., Chang K. & Wenthold R. J. Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor. The Journal of neuroscience 28, 3500–3509 (2008). PubMed PMC
Abdrachmanova G., Teisinger J. & Vyklicky L. Jr. Axotomy-induced changes in the properties of NMDA receptor channels in rat spinal cord motoneurons. The Journal of physiology 538, 53–63 (2002). PubMed PMC
Arnostova L. M., Pouzar V. & Drasar P. Synthesis of the sulfates derived from 5 alpha-cholestane-3 beta,6 alpha-diol. Steroids 57, 233–235 (1992). PubMed
Karakas E. & Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997 (2014). PubMed PMC
Lee C. H. et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197 (2014). PubMed PMC
Sali A. & Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. Journal of molecular biology 234, 779–815 (1993). PubMed
Larkin M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007). PubMed
Sanner M. F. Python: a programming language for software integration and development. Journal of molecular graphics & modelling 17, 57–61 (1999). PubMed
Lomize M. A., Lomize A. L., Pogozheva I. D. & Mosberg H. I. OPM: orientations of proteins in membranes database. Bioinformatics 22, 623–625 (2006). PubMed
Palmitoylation Controls NMDA Receptor Function and Steroid Sensitivity
Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor
NMDA Receptor Opening and Closing-Transitions of a Molecular Machine Revealed by Molecular Dynamics
The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate