Altered Steroidome in Women with Gestational Diabetes Mellitus: Focus on Neuroactive and Immunomodulatory Steroids from the 24th Week of Pregnancy to Labor
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34944390
PubMed Central
PMC8698588
DOI
10.3390/biom11121746
PII: biom11121746
Knihovny.cz E-zdroje
- Klíčová slova
- gas chromatography-tandem mass spectrometry, gestational age, gestational diabetes mellitus, immunoprotective steroids, maternal blood, mixed cord blood, neuroactive steroids, steroidome,
- MeSH
- 20-hydroxysteroid dehydrogenasy metabolismus MeSH
- chromatografie plynová MeSH
- cytochrom P-450 CYP3A metabolismus MeSH
- druhý trimestr těhotenství metabolismus MeSH
- gestační diabetes metabolismus MeSH
- lidé MeSH
- metabolomika metody MeSH
- oxidoreduktasy metabolismus MeSH
- steroid-17-alfa-hydroxylasa metabolismus MeSH
- steroidy analýza MeSH
- tandemová hmotnostní spektrometrie MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 20-hydroxysteroid dehydrogenasy MeSH
- 3 alpha-beta, 20 beta-hydroxysteroid dehydrogenase MeSH Prohlížeč
- 3-oxo-5 beta-steroid delta 4-dehydrogenase MeSH Prohlížeč
- CYP17A1 protein, human MeSH Prohlížeč
- CYP3A7 protein, human MeSH Prohlížeč
- cytochrom P-450 CYP3A MeSH
- oxidoreduktasy MeSH
- steroid-17-alfa-hydroxylasa MeSH
- steroidy MeSH
Gestational diabetes mellitus (GDM) is a complication in pregnancy, but studies focused on the steroidome in patients with GDM are not available in the public domain. This article evaluates the steroidome in GDM+ and GDM- women and its changes from 24 weeks (± of gestation) to labor. The study included GDM+ (n = 44) and GDM- women (n = 33), in weeks 24-28, 30-36 of gestation and at labor and mixed umbilical blood after delivery. Steroidomic data (101 steroids quantified by GC-MS/MS) support the concept that the increasing diabetogenic effects with the approaching term are associated with mounting progesterone levels. The GDM+ group showed lower levels of testosterone (due to reduced AKR1C3 activity), estradiol (due to a shift from the HSD17B1 towards HSD17B2 activity), 7-oxygenated androgens (competing with cortisone for HSD11B1 and shifting the balance from diabetogenic cortisol towards the inactive cortisone), reduced activities of SRD5As, and CYP17A1 in the hydroxylase but higher CYP17A1 activity in the lyase step. With the approaching term, the authors found rising activities of CYP3A7, AKR1C1, CYP17A1 in its hydroxylase step, but a decline in its lyase step, rising conjugation of neuroinhibitory and pregnancy-stabilizing steroids and weakening AKR1D1 activity.
Zobrazit více v PubMed
Plows J.F., Stanley J.L., Baker P.N., Reynolds C.M., Vickers M.H. The pathophysiology of gestational diabetes mellitus. Int. J. Mol. Sci. 2018;19:3342. doi: 10.3390/ijms19113342. PubMed DOI PMC
Simjak P., Cinkajzlova A., Anderlova K., Parizek A., Mraz M., Krsek M., Haluzik M. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J. Endocrinol. 2018;238:R63–R77. doi: 10.1530/JOE-18-0032. PubMed DOI
Cinkajzlova A., Anderlova K., Simjak P., Lacinova Z., Klouckova J., Kratochvilova H., Krejci H., Parizek A., Mraz M., Krsek M., et al. Subclinical Inflammation and adipose tissue lymphocytes in pregnant females with gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2020;105:e3892–e3902. doi: 10.1210/clinem/dgaa528. PubMed DOI
Moyce B.L., Dolinsky V.W. Maternal β-cell adaptations in pregnancy and placental signalling: Implications for gestational diabetes. Int. J. Mol. Sci. 2018;19:3467. doi: 10.3390/ijms19113467. PubMed DOI PMC
Naylor J., Li J., Milligan C.J., Zeng F., Sukumar P., Hou B., Sedo A., Yuldasheva N., Majeed Y., Beri D., et al. Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ. Res. 2010;106:1507–1515. doi: 10.1161/CIRCRESAHA.110.219329. PubMed DOI PMC
Majeed Y., Agarwal A.K., Naylor J., Seymour V.A., Jiang S., Muraki K., Fishwick C.W., Beech D.J. Cis-isomerism and other chemical requirements of steroidal agonists and partial agonists acting at TRPM3 channels. Br. J. Pharmacol. 2010;161:430–441. doi: 10.1111/j.1476-5381.2010.00892.x. PubMed DOI PMC
Lesch A., Rubil S., Thiel G. Activation and inhibition of transient receptor potential TRPM3-induced gene transcription. Br. J. Pharmacol. 2014;171:2645–2658. doi: 10.1111/bph.12524. PubMed DOI PMC
Lambert S., Drews A., Rizun O., Wagner T.F., Lis A., Mannebach S., Plant S., Portz M., Meissner M., Philipp S.E., et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J. Biol. Chem. 2011;286:12221–12233. doi: 10.1074/jbc.M110.202945. PubMed DOI PMC
Drews A., Mohr F., Rizun O., Wagner T.F., Dembla S., Rudolph S., Lambert S., Konrad M., Philipp S.E., Behrendt M., et al. Structural requirements of steroidal agonists of transient receptor potential melastatin 3 (TRPM3) cation channels. Br. J. Pharmacol. 2014;171:1019–1032. doi: 10.1111/bph.12521. PubMed DOI PMC
Kudo K., Tachikawa E., Kashimoto T. Inhibition by pregnenolone sulfate of nicotinic acetylcholine response in adrenal chromaffin cells. Eur. J. Pharmacol. 2002;456:19–27. doi: 10.1016/S0014-2999(02)02623-7. PubMed DOI
Paradiso K., Sabey K., Evers A.S., Zorumski C.F., Covey D.F., Steinbach J.H. Steroid inhibition of rat neuronal nicotinic α4β2 receptors expressed in HEK 293 cells. Mol. Pharmacol. 2000;58:341–351. doi: 10.1124/mol.58.2.341. PubMed DOI
Morimoto S., Jimenez-Trejo F., Cerbon M. Sex steroids effects in normal endocrine pancreatic function and diabetes. Curr. Top. Med. Chem. 2011;11:1728–1735. PubMed
Picard F., Wanatabe M., Schoonjans K., Lydon J., O’Malley B.W., Auwerx J. Progesterone receptor knockout mice have an improved glucose homeostasis secondary to β-cell proliferation. Proc. Natl. Acad. Sci. USA. 2002;99:15644–15648. doi: 10.1073/pnas.202612199. PubMed DOI PMC
Robles-Diaz G., Duarte-Rojo A. Pancreas: A sex steroid-dependent tissue. Isr. Med. Assoc. J. 2001;3:364–368. PubMed
Majeed Y., Tumova S., Green B.L., Seymour V.A., Woods D.M., Agarwal A.K., Naylor J., Jiang S., Picton H.M., Porter K.E., et al. Pregnenolone sulphate-independent inhibition of TRPM3 channels by progesterone. Cell Calcium. 2012;51:1–11. doi: 10.1016/j.ceca.2011.09.005. PubMed DOI PMC
De Roo M., Boue-Grabot E., Schlichter R. Selective potentiation of homomeric P2X2 ionotropic ATP receptors by a fast non-genomic action of progesterone. Neuropharmacology. 2010;58:569–577. doi: 10.1016/j.neuropharm.2009.12.002. PubMed DOI
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal. 2014;10:189–231. doi: 10.1007/s11302-013-9396-x. PubMed DOI PMC
Yaghoubi N., Malayev A., Russek S.J., Gibbs T.T., Farb D.H. Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Res. 1998;803:153–160. doi: 10.1016/S0006-8993(98)00644-1. PubMed DOI
Yu R., Xu X.H., Sheng M.P. Differential effects of allopregnanolone and GABA on kainate-induced lactate dehydrogenase release in cultured rat cerebral cortical cells. Acta Pharmacol. Sin. 2002;23:680–684. PubMed
Gu Q., Moss R.L. 17 β-Estradiol potentiates kainate-induced currents via activation of the cAMP cascade. J. Neurosci. 1996;16:3620–3629. doi: 10.1523/JNEUROSCI.16-11-03620.1996. PubMed DOI PMC
Jin Y., Korol S.V., Jin Z., Barg S., Birnir B. In intact islets interstitial GABA activates GABA(A) receptors that generate tonic currents in α-cells. PLoS ONE. 2013;8:e67228. doi: 10.1371/journal.pone.0067228. PubMed DOI PMC
Dong H., Kumar M., Zhang Y., Gyulkhandanyan A., Xiang Y.Y., Ye B., Perrella J., Hyder A., Zhang N., Wheeler M., et al. γ-Aminobutyric acid up- and downregulates insulin secretion from β cells in concert with changes in glucose concentration. Diabetologia. 2006;49:697–705. doi: 10.1007/s00125-005-0123-1. PubMed DOI
Park-Chung M., Malayev A., Purdy R.H., Gibbs T.T., Farb D.H. Sulfated and unsulfated steroids modulate γ-aminobutyric acidA receptor function through distinct sites. Brain Res. 1999;830:72–87. doi: 10.1016/S0006-8993(99)01381-5. PubMed DOI
Fodor L., Biro T., Maksay G. Nanomolar allopregnanolone potentiates rat cerebellar GABAA receptors. Neurosci. Lett. 2005;383:127–130. doi: 10.1016/j.neulet.2005.03.064. PubMed DOI
Gartside S.E., Griffith N.C., Kaura V., Ingram C.D. The neurosteroid dehydroepiandrosterone (DHEA) and its metabolites alter 5-HT neuronal activity via modulation of GABAA receptors. J. Psychopharmacol. 2010;24:1717–1724. doi: 10.1177/0269881109105836. PubMed DOI
Hill M., Parizek A., Cibula D., Kancheva R., Jirasek J.E., Jirkovska M., Velikova M., Kubatova J., Klimkova M., Paskova A., et al. Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J. Steroid Biochem. Mol. Biol. 2010;122:114–132. doi: 10.1016/j.jsbmb.2010.05.007. PubMed DOI
Mauvais-Jarvis F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol. Metab. 2016;27:844–855. doi: 10.1016/j.tem.2016.08.008. PubMed DOI PMC
Sutter-Dub M.T. Rapid non-genomic and genomic responses to progestogens, estrogens, and glucocorticoids in the endocrine pancreatic B cell, the adipocyte and other cell types. Steroids. 2002;67:77–93. doi: 10.1016/S0039-128X(01)00142-8. PubMed DOI
Ropero A.B., Alonso-Magdalena P., Quesada I., Nadal A. The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids. 2008;73:874–879. doi: 10.1016/j.steroids.2007.12.018. PubMed DOI
Moller C., Netzer R. Effects of estradiol on cardiac ion channel currents. Eur. J. Pharmacol. 2006;532:44–49. doi: 10.1016/j.ejphar.2006.01.006. PubMed DOI
Cabrera O., Jacques-Silva M.C., Speier S., Yang S.N., Kohler M., Fachado A., Vieira E., Zierath J.R., Kibbey R., Berman D.M., et al. Glutamate is a positive autocrine signal for glucagon release. Cell Metab. 2008;7:545–554. doi: 10.1016/j.cmet.2008.03.004. PubMed DOI PMC
Nadal A., Ropero A.B., Fuentes E., Soria B., Ripoll C. Estrogen and xenoestrogen actions on endocrine pancreas: From ion channel modulation to activation of nuclear function. Steroids. 2004;69:531–536. doi: 10.1016/j.steroids.2004.05.010. PubMed DOI
Pluchino N., Luisi M., Lenzi E., Centofanti M., Begliuomini S., Freschi L., Ninni F., Genazzani A.R. Progesterone and progestins: Effects on brain, allopregnanolone and β-endorphin. J. Steroid Biochem. Mol. Biol. 2006;102:205–213. doi: 10.1016/j.jsbmb.2006.09.023. PubMed DOI
Hill M., Paskova A., Kanceva R., Velikova M., Kubatova J., Kancheva L., Adamcova K., Mikesova M., Zizka Z., Koucky M., et al. Steroid profiling in pregnancy: A focus on the human fetus. J. Steroid Biochem. Mol. Biol. 2014;139:201–222. doi: 10.1016/j.jsbmb.2013.03.008. PubMed DOI
Feng Y., Feng Q., Qu H., Song X., Hu J., Xu X., Zhang L., Yin S. Stress adaptation is associated with insulin resistance in women with gestational diabetes mellitus. Nutr. Diabetes. 2020;10:4. doi: 10.1038/s41387-020-0107-8. PubMed DOI PMC
Hennebert O., Chalbot S., Alran S., Morfin R. Dehydroepiandrosterone 7α-hydroxylation in human tissues: Possible interference with type 1 11β-hydroxysteroid dehydrogenase-mediated processes. J. Steroid Biochem. Mol. Biol. 2007;104:326–333. doi: 10.1016/j.jsbmb.2007.03.026. PubMed DOI
Auci D.L., Reading C.L., Frincke J.M. 7-Hydroxy androstene steroids and a novel synthetic analogue with reduced side effects as a potential agent to treat autoimmune diseases. Autoimmun. Rev. 2009;8:369–372. doi: 10.1016/j.autrev.2008.11.011. PubMed DOI
Li G., Gao W., Xu Y., Xie M., Tang S., Yin P., Guo S., Chu S., Sultana S., Cui S. Serum metabonomics study of pregnant women with gestational diabetes mellitus based on LC-MS. Saudi J. Biol. Sci. 2019;26:2057–2063. doi: 10.1016/j.sjbs.2019.09.016. PubMed DOI PMC
Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI
Brochu M., Belanger A. Comparative study of plasma steroid and steroid glucuronide levels in normal men and in men with benign prostatic hyperplasia. Prostate. 1987;11:33–40. doi: 10.1002/pros.2990110105. PubMed DOI
Sanchez-Guijo A., Oji V., Hartmann M.F., Traupe H., Wudy S.A. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS. J. Lipid Res. 2015;56:1843–1851. doi: 10.1194/jlr.D061499. PubMed DOI PMC
Labrie F., Belanger A., Cusan L., Gomez J.L., Candas B. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J. Clin. Endocrinol. Metab. 1997;82:2396–2402. doi: 10.1210/jcem.82.8.4160. PubMed DOI
Brochu M., Belanger A., Dupont A., Cusan L., Labrie F. Effects of flutamide and aminoglutethimide on plasma 5 α-reduced steroid glucuronide concentrations in castrated patients with cancer of the prostate. J. Steroid Biochem. 1987;28:619–622. doi: 10.1016/0022-4731(87)90388-8. PubMed DOI
Tokushige K., Hashimoto E., Kodama K., Tobari M., Matsushita N., Kogiso T., Taniai M., Torii N., Shiratori K., Nishizaki Y., et al. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J. Gastroenterol. 2013;48:1392–1400. doi: 10.1007/s00535-013-0766-5. PubMed DOI PMC
Meng L.J., Reyes H., Axelson M., Palma J., Hernandez I., Ribalta J., Sjovall J. Progesterone metabolites and bile acids in serum of patients with intrahepatic cholestasis of pregnancy: Effect of ursodeoxycholic acid therapy. Hepatology. 1997;26:1573–1579. doi: 10.1002/hep.510260627. PubMed DOI
Abu-Hayyeh S., Papacleovoulou G., Lovgren-Sandblom A., Tahir M., Oduwole O., Jamaludin N.A., Ravat S., Nikolova V., Chambers J., Selden C., et al. Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype. Hepatology. 2013;57:716–726. doi: 10.1002/hep.26055. PubMed DOI PMC
Meloun M., Hill M., Militky J., Kupka K. Transformation in the PC-aided biochemical data analysis. Clin. Chem. Lab. Med. 2000;38:553–559. doi: 10.1515/CCLM.2000.081. PubMed DOI
Meloun M., Militky J., Hill M., Brereton R.G. Crucial problems in regression modelling and their solutions. Analyst. 2002;127:433–450. doi: 10.1039/b110779h. PubMed DOI
Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC
Luu-The V. Assessment of steroidogenesis and steroidogenic enzyme functions. J. Steroid Biochem. Mol. Biol. 2013;137:176–182. doi: 10.1016/j.jsbmb.2013.05.017. PubMed DOI
Karahoda R., Kallol S., Groessl M., Ontsouka E., Anderle P., Fluck C., Staud F., Albrecht C. Revisiting steroidogenic pathways in the human placenta and primary human trophoblast cells. Int. J. Mol. Sci. 2021;22:1704. doi: 10.3390/ijms22041704. PubMed DOI PMC
Pasqualini J.R., Chetrite G.S. The formation and transformation of hormones in maternal, placental and fetal compartments: Biological implications. Horm. Mol. Biol. Clin. Investig. 2016;27:11–28. doi: 10.1515/hmbci-2016-0036. PubMed DOI
Chatuphonprasert W., Jarukamjorn K., Ellinger I. Physiology and pathophysiology of steroid biosynthesis, transport and metabolism in the human placenta. Front. Pharmacol. 2018;9:1027. doi: 10.3389/fphar.2018.01027. PubMed DOI PMC
Gupta M.K., Guryev O.L., Auchus R.J. 5α-reduced C21 steroids are substrates for human cytochrome P450c17. Arch. Biochem. Biophys. 2003;418:151–160. doi: 10.1016/j.abb.2003.07.003. PubMed DOI
Lambert J.J., Belelli D., Peden D.R., Vardy A.W., Peters J.A. Neurosteroid modulation of GABAA receptors. Prog. Neurobiol. 2003;71:67–80. doi: 10.1016/j.pneurobio.2003.09.001. PubMed DOI
Weir C.J., Ling A.T., Belelli D., Wildsmith J.A., Peters J.A., Lambert J.J. The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br. J. Anaesth. 2004;92:704–711. doi: 10.1093/bja/aeh125. PubMed DOI
Irwin R.P., Lin S.Z., Rogawski M.A., Purdy R.H., Paul S.M. Steroid potentiation and inhibition of N-methyl-d-aspartate receptor-mediated intracellular Ca+ responses: Structure-activity studies. J. Pharmacol. Exp. Ther. 1994;271:677–682. PubMed
Dayanithi G., Tapia-Arancibia L. Rise in intracellular calcium via a nongenomic effect of allopregnanolone in fetal rat hypothalamic neurons. J. Neurosci. 1996;16:130–136. doi: 10.1523/JNEUROSCI.16-01-00130.1996. PubMed DOI PMC
Ranna M., Sinkkonen S.T., Moykkynen T., Uusi-Oukari M., Korpi E.R. Impact of epsilon and theta subunits on pharmacological properties of α3β1 GABAA receptors expressed in Xenopus oocytes. BMC Pharmacol. 2006;6:1. doi: 10.1186/1471-2210-6-1. PubMed DOI PMC
Malayev A., Gibbs T.T., Farb D.H. Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br. J. Pharmacol. 2002;135:901–909. doi: 10.1038/sj.bjp.0704543. PubMed DOI PMC
Vyklicky V., Krausova B., Cerny J., Balik A., Zapotocky M., Novotny M., Lichnerova K., Smejkalova T., Kaniakova M., Korinek M., et al. Block of NMDA receptor channels by endogenous neurosteroids: Implications for the agonist induced conformational states of the channel vestibule. Sci. Rep. 2015;5:10935. doi: 10.1038/srep10935. PubMed DOI PMC
Majeed Y., Amer M.S., Agarwal A.K., McKeown L., Porter K.E., O’Regan D.J., Naylor J., Fishwick C.W., Muraki K., Beech D.J. Stereo-selective inhibition of transient receptor potential TRPC5 cation channels by neuroactive steroids. Br. J. Pharmacol. 2011;162:1509–1520. doi: 10.1111/j.1476-5381.2010.01136.x. PubMed DOI PMC
Riccio A., Li Y., Moon J., Kim K.S., Smith K.S., Rudolph U., Gapon S., Yao G.L., Tsvetkov E., Rodig S.J., et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell. 2009;137:761–772. doi: 10.1016/j.cell.2009.03.039. PubMed DOI PMC
Lundgren P., Stromberg J., Backstrom T., Wang M. Allopregnanolone-stimulated GABA-mediated chloride ion flux is inhibited by 3β-hydroxy-5α-pregnan-20-one (isoallopregnanolone) Brain Res. 2003;982:45–53. doi: 10.1016/S0006-8993(03)02939-1. PubMed DOI
Wang M., He Y., Eisenman L.N., Fields C., Zeng C.M., Mathews J., Benz A., Fu T., Zorumski E., Steinbach J.H., et al. 3β-hydroxypregnane steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. J. Neurosci. 2002;22:3366–3375. doi: 10.1523/JNEUROSCI.22-09-03366.2002. PubMed DOI PMC
Reddy D.S. Anticonvulsant activity of the testosterone-derived neurosteroid 3α-androstanediol. Neuroreport. 2004;15:515–518. doi: 10.1097/00001756-200403010-00026. PubMed DOI
Mtchedlishvili Z., Sun C.S., Harrison M.B., Kapur J. Increased neurosteroid sensitivity of hippocampal GABAA receptors during postnatal development. Neuroscience. 2003;118:655–666. doi: 10.1016/S0306-4522(03)00043-5. PubMed DOI PMC
Horak M., Vlcek K., Chodounska H., Vyklicky L., Jr. Subtype-dependence of N-methyl-d-aspartate receptor modulation by pregnenolone sulfate. Neuroscience. 2006;137:93–102. doi: 10.1016/j.neuroscience.2005.08.058. PubMed DOI
Traish A.M., Guay A.T., Zitzmann M. 5α-Reductase inhibitors alter steroid metabolism and may contribute to insulin resistance, diabetes, metabolic syndrome and vascular disease: A medical hypothesis. Horm. Mol. Biol. Clin. Investig. 2014;20:73–80. doi: 10.1515/hmbci-2014-0025. PubMed DOI
Hirst J.J., Kelleher M.A., Walker D.W., Palliser H.K. Neuroactive steroids in pregnancy: Key regulatory and protective roles in the foetal brain. J. Steroid Biochem. Mol. Biol. 2014;139:144–153. doi: 10.1016/j.jsbmb.2013.04.002. PubMed DOI
Milewich L., Gant N.F., Schwarz B.E., Chen G.T., MacDonald P.C. 5 α-Reductase activity in human placenta. Am. J. Obstet. Gynecol. 1979;133:611–617. doi: 10.1016/0002-9378(79)90006-1. PubMed DOI
BioGPS. Affymetrix; Santa Clara, CA, USA: 2016. 2011/11/13.
Manjunath-Gowda S., Charles C., Muneyyirci-Delale O., Nacharaju V. Cortisol metabolism in normal pregnancy and pregnancy associated with gestational diabetes. Fertil. Steril. 2013;100:S333. doi: 10.1016/j.fertnstert.2013.07.915. DOI
Upreti R., Hughes K.A., Livingstone D.E., Gray C.D., Minns F.C., Macfarlane D.P., Marshall I., Stewart L.H., Walker B.R., Andrew R. 5α-Reductase type 1 modulates insulin sensitivity in men. J. Clin. Endocrinol. Metab. 2014;99:E1397–E1406. doi: 10.1210/jc.2014-1395. PubMed DOI PMC
Nasiri M., Nikolaou N., Parajes S., Krone N.P., Valsamakis G., Mastorakos G., Hughes B., Taylor A., Bujalska I.J., Gathercole L.L., et al. 5α-Reductase type 2 regulates glucocorticoid action and metabolic phenotype in human hepatocytes. Endocrinology. 2015;156:2863–2871. doi: 10.1210/en.2015-1149. PubMed DOI PMC
Conrad D., Wang A., Pieters R., Nicoletti F., Mangano K., van Heeckeren A.M., White S.K., Frincke J.M., Reading C.L., Stickney D., et al. HE3286, an oral synthetic steroid, treats lung inflammation in mice without immune suppression. J. Inflamm. 2010;7:52. doi: 10.1186/1476-9255-7-52. PubMed DOI PMC
Li H., Lampe J.N. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch. Biochem. Biophys. 2019;673:108078. doi: 10.1016/j.abb.2019.108078. PubMed DOI PMC
Chiodini I., Adda G., Scillitani A., Coletti F., Morelli V., Di Lembo S., Epaminonda P., Masserini B., Beck-Peccoz P., Orsi E., et al. Cortisol secretion in patients with type 2 diabetes: Relationship with chronic complications. Diabetes Care. 2007;30:83–88. doi: 10.2337/dc06-1267. PubMed DOI