Altered Steroidome in Women with Gestational Diabetes Mellitus: Focus on Neuroactive and Immunomodulatory Steroids from the 24th Week of Pregnancy to Labor

. 2021 Nov 23 ; 11 (12) : . [epub] 20211123

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34944390

Gestational diabetes mellitus (GDM) is a complication in pregnancy, but studies focused on the steroidome in patients with GDM are not available in the public domain. This article evaluates the steroidome in GDM+ and GDM- women and its changes from 24 weeks (± of gestation) to labor. The study included GDM+ (n = 44) and GDM- women (n = 33), in weeks 24-28, 30-36 of gestation and at labor and mixed umbilical blood after delivery. Steroidomic data (101 steroids quantified by GC-MS/MS) support the concept that the increasing diabetogenic effects with the approaching term are associated with mounting progesterone levels. The GDM+ group showed lower levels of testosterone (due to reduced AKR1C3 activity), estradiol (due to a shift from the HSD17B1 towards HSD17B2 activity), 7-oxygenated androgens (competing with cortisone for HSD11B1 and shifting the balance from diabetogenic cortisol towards the inactive cortisone), reduced activities of SRD5As, and CYP17A1 in the hydroxylase but higher CYP17A1 activity in the lyase step. With the approaching term, the authors found rising activities of CYP3A7, AKR1C1, CYP17A1 in its hydroxylase step, but a decline in its lyase step, rising conjugation of neuroinhibitory and pregnancy-stabilizing steroids and weakening AKR1D1 activity.

Zobrazit více v PubMed

Plows J.F., Stanley J.L., Baker P.N., Reynolds C.M., Vickers M.H. The pathophysiology of gestational diabetes mellitus. Int. J. Mol. Sci. 2018;19:3342. doi: 10.3390/ijms19113342. PubMed DOI PMC

Simjak P., Cinkajzlova A., Anderlova K., Parizek A., Mraz M., Krsek M., Haluzik M. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J. Endocrinol. 2018;238:R63–R77. doi: 10.1530/JOE-18-0032. PubMed DOI

Cinkajzlova A., Anderlova K., Simjak P., Lacinova Z., Klouckova J., Kratochvilova H., Krejci H., Parizek A., Mraz M., Krsek M., et al. Subclinical Inflammation and adipose tissue lymphocytes in pregnant females with gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2020;105:e3892–e3902. doi: 10.1210/clinem/dgaa528. PubMed DOI

Moyce B.L., Dolinsky V.W. Maternal β-cell adaptations in pregnancy and placental signalling: Implications for gestational diabetes. Int. J. Mol. Sci. 2018;19:3467. doi: 10.3390/ijms19113467. PubMed DOI PMC

Naylor J., Li J., Milligan C.J., Zeng F., Sukumar P., Hou B., Sedo A., Yuldasheva N., Majeed Y., Beri D., et al. Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ. Res. 2010;106:1507–1515. doi: 10.1161/CIRCRESAHA.110.219329. PubMed DOI PMC

Majeed Y., Agarwal A.K., Naylor J., Seymour V.A., Jiang S., Muraki K., Fishwick C.W., Beech D.J. Cis-isomerism and other chemical requirements of steroidal agonists and partial agonists acting at TRPM3 channels. Br. J. Pharmacol. 2010;161:430–441. doi: 10.1111/j.1476-5381.2010.00892.x. PubMed DOI PMC

Lesch A., Rubil S., Thiel G. Activation and inhibition of transient receptor potential TRPM3-induced gene transcription. Br. J. Pharmacol. 2014;171:2645–2658. doi: 10.1111/bph.12524. PubMed DOI PMC

Lambert S., Drews A., Rizun O., Wagner T.F., Lis A., Mannebach S., Plant S., Portz M., Meissner M., Philipp S.E., et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J. Biol. Chem. 2011;286:12221–12233. doi: 10.1074/jbc.M110.202945. PubMed DOI PMC

Drews A., Mohr F., Rizun O., Wagner T.F., Dembla S., Rudolph S., Lambert S., Konrad M., Philipp S.E., Behrendt M., et al. Structural requirements of steroidal agonists of transient receptor potential melastatin 3 (TRPM3) cation channels. Br. J. Pharmacol. 2014;171:1019–1032. doi: 10.1111/bph.12521. PubMed DOI PMC

Kudo K., Tachikawa E., Kashimoto T. Inhibition by pregnenolone sulfate of nicotinic acetylcholine response in adrenal chromaffin cells. Eur. J. Pharmacol. 2002;456:19–27. doi: 10.1016/S0014-2999(02)02623-7. PubMed DOI

Paradiso K., Sabey K., Evers A.S., Zorumski C.F., Covey D.F., Steinbach J.H. Steroid inhibition of rat neuronal nicotinic α4β2 receptors expressed in HEK 293 cells. Mol. Pharmacol. 2000;58:341–351. doi: 10.1124/mol.58.2.341. PubMed DOI

Morimoto S., Jimenez-Trejo F., Cerbon M. Sex steroids effects in normal endocrine pancreatic function and diabetes. Curr. Top. Med. Chem. 2011;11:1728–1735. PubMed

Picard F., Wanatabe M., Schoonjans K., Lydon J., O’Malley B.W., Auwerx J. Progesterone receptor knockout mice have an improved glucose homeostasis secondary to β-cell proliferation. Proc. Natl. Acad. Sci. USA. 2002;99:15644–15648. doi: 10.1073/pnas.202612199. PubMed DOI PMC

Robles-Diaz G., Duarte-Rojo A. Pancreas: A sex steroid-dependent tissue. Isr. Med. Assoc. J. 2001;3:364–368. PubMed

Majeed Y., Tumova S., Green B.L., Seymour V.A., Woods D.M., Agarwal A.K., Naylor J., Jiang S., Picton H.M., Porter K.E., et al. Pregnenolone sulphate-independent inhibition of TRPM3 channels by progesterone. Cell Calcium. 2012;51:1–11. doi: 10.1016/j.ceca.2011.09.005. PubMed DOI PMC

De Roo M., Boue-Grabot E., Schlichter R. Selective potentiation of homomeric P2X2 ionotropic ATP receptors by a fast non-genomic action of progesterone. Neuropharmacology. 2010;58:569–577. doi: 10.1016/j.neuropharm.2009.12.002. PubMed DOI

Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal. 2014;10:189–231. doi: 10.1007/s11302-013-9396-x. PubMed DOI PMC

Yaghoubi N., Malayev A., Russek S.J., Gibbs T.T., Farb D.H. Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Res. 1998;803:153–160. doi: 10.1016/S0006-8993(98)00644-1. PubMed DOI

Yu R., Xu X.H., Sheng M.P. Differential effects of allopregnanolone and GABA on kainate-induced lactate dehydrogenase release in cultured rat cerebral cortical cells. Acta Pharmacol. Sin. 2002;23:680–684. PubMed

Gu Q., Moss R.L. 17 β-Estradiol potentiates kainate-induced currents via activation of the cAMP cascade. J. Neurosci. 1996;16:3620–3629. doi: 10.1523/JNEUROSCI.16-11-03620.1996. PubMed DOI PMC

Jin Y., Korol S.V., Jin Z., Barg S., Birnir B. In intact islets interstitial GABA activates GABA(A) receptors that generate tonic currents in α-cells. PLoS ONE. 2013;8:e67228. doi: 10.1371/journal.pone.0067228. PubMed DOI PMC

Dong H., Kumar M., Zhang Y., Gyulkhandanyan A., Xiang Y.Y., Ye B., Perrella J., Hyder A., Zhang N., Wheeler M., et al. γ-Aminobutyric acid up- and downregulates insulin secretion from β cells in concert with changes in glucose concentration. Diabetologia. 2006;49:697–705. doi: 10.1007/s00125-005-0123-1. PubMed DOI

Park-Chung M., Malayev A., Purdy R.H., Gibbs T.T., Farb D.H. Sulfated and unsulfated steroids modulate γ-aminobutyric acidA receptor function through distinct sites. Brain Res. 1999;830:72–87. doi: 10.1016/S0006-8993(99)01381-5. PubMed DOI

Fodor L., Biro T., Maksay G. Nanomolar allopregnanolone potentiates rat cerebellar GABAA receptors. Neurosci. Lett. 2005;383:127–130. doi: 10.1016/j.neulet.2005.03.064. PubMed DOI

Gartside S.E., Griffith N.C., Kaura V., Ingram C.D. The neurosteroid dehydroepiandrosterone (DHEA) and its metabolites alter 5-HT neuronal activity via modulation of GABAA receptors. J. Psychopharmacol. 2010;24:1717–1724. doi: 10.1177/0269881109105836. PubMed DOI

Hill M., Parizek A., Cibula D., Kancheva R., Jirasek J.E., Jirkovska M., Velikova M., Kubatova J., Klimkova M., Paskova A., et al. Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J. Steroid Biochem. Mol. Biol. 2010;122:114–132. doi: 10.1016/j.jsbmb.2010.05.007. PubMed DOI

Mauvais-Jarvis F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol. Metab. 2016;27:844–855. doi: 10.1016/j.tem.2016.08.008. PubMed DOI PMC

Sutter-Dub M.T. Rapid non-genomic and genomic responses to progestogens, estrogens, and glucocorticoids in the endocrine pancreatic B cell, the adipocyte and other cell types. Steroids. 2002;67:77–93. doi: 10.1016/S0039-128X(01)00142-8. PubMed DOI

Ropero A.B., Alonso-Magdalena P., Quesada I., Nadal A. The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids. 2008;73:874–879. doi: 10.1016/j.steroids.2007.12.018. PubMed DOI

Moller C., Netzer R. Effects of estradiol on cardiac ion channel currents. Eur. J. Pharmacol. 2006;532:44–49. doi: 10.1016/j.ejphar.2006.01.006. PubMed DOI

Cabrera O., Jacques-Silva M.C., Speier S., Yang S.N., Kohler M., Fachado A., Vieira E., Zierath J.R., Kibbey R., Berman D.M., et al. Glutamate is a positive autocrine signal for glucagon release. Cell Metab. 2008;7:545–554. doi: 10.1016/j.cmet.2008.03.004. PubMed DOI PMC

Nadal A., Ropero A.B., Fuentes E., Soria B., Ripoll C. Estrogen and xenoestrogen actions on endocrine pancreas: From ion channel modulation to activation of nuclear function. Steroids. 2004;69:531–536. doi: 10.1016/j.steroids.2004.05.010. PubMed DOI

Pluchino N., Luisi M., Lenzi E., Centofanti M., Begliuomini S., Freschi L., Ninni F., Genazzani A.R. Progesterone and progestins: Effects on brain, allopregnanolone and β-endorphin. J. Steroid Biochem. Mol. Biol. 2006;102:205–213. doi: 10.1016/j.jsbmb.2006.09.023. PubMed DOI

Hill M., Paskova A., Kanceva R., Velikova M., Kubatova J., Kancheva L., Adamcova K., Mikesova M., Zizka Z., Koucky M., et al. Steroid profiling in pregnancy: A focus on the human fetus. J. Steroid Biochem. Mol. Biol. 2014;139:201–222. doi: 10.1016/j.jsbmb.2013.03.008. PubMed DOI

Feng Y., Feng Q., Qu H., Song X., Hu J., Xu X., Zhang L., Yin S. Stress adaptation is associated with insulin resistance in women with gestational diabetes mellitus. Nutr. Diabetes. 2020;10:4. doi: 10.1038/s41387-020-0107-8. PubMed DOI PMC

Hennebert O., Chalbot S., Alran S., Morfin R. Dehydroepiandrosterone 7α-hydroxylation in human tissues: Possible interference with type 1 11β-hydroxysteroid dehydrogenase-mediated processes. J. Steroid Biochem. Mol. Biol. 2007;104:326–333. doi: 10.1016/j.jsbmb.2007.03.026. PubMed DOI

Auci D.L., Reading C.L., Frincke J.M. 7-Hydroxy androstene steroids and a novel synthetic analogue with reduced side effects as a potential agent to treat autoimmune diseases. Autoimmun. Rev. 2009;8:369–372. doi: 10.1016/j.autrev.2008.11.011. PubMed DOI

Li G., Gao W., Xu Y., Xie M., Tang S., Yin P., Guo S., Chu S., Sultana S., Cui S. Serum metabonomics study of pregnant women with gestational diabetes mellitus based on LC-MS. Saudi J. Biol. Sci. 2019;26:2057–2063. doi: 10.1016/j.sjbs.2019.09.016. PubMed DOI PMC

Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI

Brochu M., Belanger A. Comparative study of plasma steroid and steroid glucuronide levels in normal men and in men with benign prostatic hyperplasia. Prostate. 1987;11:33–40. doi: 10.1002/pros.2990110105. PubMed DOI

Sanchez-Guijo A., Oji V., Hartmann M.F., Traupe H., Wudy S.A. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS. J. Lipid Res. 2015;56:1843–1851. doi: 10.1194/jlr.D061499. PubMed DOI PMC

Labrie F., Belanger A., Cusan L., Gomez J.L., Candas B. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J. Clin. Endocrinol. Metab. 1997;82:2396–2402. doi: 10.1210/jcem.82.8.4160. PubMed DOI

Brochu M., Belanger A., Dupont A., Cusan L., Labrie F. Effects of flutamide and aminoglutethimide on plasma 5 α-reduced steroid glucuronide concentrations in castrated patients with cancer of the prostate. J. Steroid Biochem. 1987;28:619–622. doi: 10.1016/0022-4731(87)90388-8. PubMed DOI

Tokushige K., Hashimoto E., Kodama K., Tobari M., Matsushita N., Kogiso T., Taniai M., Torii N., Shiratori K., Nishizaki Y., et al. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J. Gastroenterol. 2013;48:1392–1400. doi: 10.1007/s00535-013-0766-5. PubMed DOI PMC

Meng L.J., Reyes H., Axelson M., Palma J., Hernandez I., Ribalta J., Sjovall J. Progesterone metabolites and bile acids in serum of patients with intrahepatic cholestasis of pregnancy: Effect of ursodeoxycholic acid therapy. Hepatology. 1997;26:1573–1579. doi: 10.1002/hep.510260627. PubMed DOI

Abu-Hayyeh S., Papacleovoulou G., Lovgren-Sandblom A., Tahir M., Oduwole O., Jamaludin N.A., Ravat S., Nikolova V., Chambers J., Selden C., et al. Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype. Hepatology. 2013;57:716–726. doi: 10.1002/hep.26055. PubMed DOI PMC

Meloun M., Hill M., Militky J., Kupka K. Transformation in the PC-aided biochemical data analysis. Clin. Chem. Lab. Med. 2000;38:553–559. doi: 10.1515/CCLM.2000.081. PubMed DOI

Meloun M., Militky J., Hill M., Brereton R.G. Crucial problems in regression modelling and their solutions. Analyst. 2002;127:433–450. doi: 10.1039/b110779h. PubMed DOI

Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC

Luu-The V. Assessment of steroidogenesis and steroidogenic enzyme functions. J. Steroid Biochem. Mol. Biol. 2013;137:176–182. doi: 10.1016/j.jsbmb.2013.05.017. PubMed DOI

Karahoda R., Kallol S., Groessl M., Ontsouka E., Anderle P., Fluck C., Staud F., Albrecht C. Revisiting steroidogenic pathways in the human placenta and primary human trophoblast cells. Int. J. Mol. Sci. 2021;22:1704. doi: 10.3390/ijms22041704. PubMed DOI PMC

Pasqualini J.R., Chetrite G.S. The formation and transformation of hormones in maternal, placental and fetal compartments: Biological implications. Horm. Mol. Biol. Clin. Investig. 2016;27:11–28. doi: 10.1515/hmbci-2016-0036. PubMed DOI

Chatuphonprasert W., Jarukamjorn K., Ellinger I. Physiology and pathophysiology of steroid biosynthesis, transport and metabolism in the human placenta. Front. Pharmacol. 2018;9:1027. doi: 10.3389/fphar.2018.01027. PubMed DOI PMC

Gupta M.K., Guryev O.L., Auchus R.J. 5α-reduced C21 steroids are substrates for human cytochrome P450c17. Arch. Biochem. Biophys. 2003;418:151–160. doi: 10.1016/j.abb.2003.07.003. PubMed DOI

Lambert J.J., Belelli D., Peden D.R., Vardy A.W., Peters J.A. Neurosteroid modulation of GABAA receptors. Prog. Neurobiol. 2003;71:67–80. doi: 10.1016/j.pneurobio.2003.09.001. PubMed DOI

Weir C.J., Ling A.T., Belelli D., Wildsmith J.A., Peters J.A., Lambert J.J. The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br. J. Anaesth. 2004;92:704–711. doi: 10.1093/bja/aeh125. PubMed DOI

Irwin R.P., Lin S.Z., Rogawski M.A., Purdy R.H., Paul S.M. Steroid potentiation and inhibition of N-methyl-d-aspartate receptor-mediated intracellular Ca+ responses: Structure-activity studies. J. Pharmacol. Exp. Ther. 1994;271:677–682. PubMed

Dayanithi G., Tapia-Arancibia L. Rise in intracellular calcium via a nongenomic effect of allopregnanolone in fetal rat hypothalamic neurons. J. Neurosci. 1996;16:130–136. doi: 10.1523/JNEUROSCI.16-01-00130.1996. PubMed DOI PMC

Ranna M., Sinkkonen S.T., Moykkynen T., Uusi-Oukari M., Korpi E.R. Impact of epsilon and theta subunits on pharmacological properties of α3β1 GABAA receptors expressed in Xenopus oocytes. BMC Pharmacol. 2006;6:1. doi: 10.1186/1471-2210-6-1. PubMed DOI PMC

Malayev A., Gibbs T.T., Farb D.H. Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br. J. Pharmacol. 2002;135:901–909. doi: 10.1038/sj.bjp.0704543. PubMed DOI PMC

Vyklicky V., Krausova B., Cerny J., Balik A., Zapotocky M., Novotny M., Lichnerova K., Smejkalova T., Kaniakova M., Korinek M., et al. Block of NMDA receptor channels by endogenous neurosteroids: Implications for the agonist induced conformational states of the channel vestibule. Sci. Rep. 2015;5:10935. doi: 10.1038/srep10935. PubMed DOI PMC

Majeed Y., Amer M.S., Agarwal A.K., McKeown L., Porter K.E., O’Regan D.J., Naylor J., Fishwick C.W., Muraki K., Beech D.J. Stereo-selective inhibition of transient receptor potential TRPC5 cation channels by neuroactive steroids. Br. J. Pharmacol. 2011;162:1509–1520. doi: 10.1111/j.1476-5381.2010.01136.x. PubMed DOI PMC

Riccio A., Li Y., Moon J., Kim K.S., Smith K.S., Rudolph U., Gapon S., Yao G.L., Tsvetkov E., Rodig S.J., et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell. 2009;137:761–772. doi: 10.1016/j.cell.2009.03.039. PubMed DOI PMC

Lundgren P., Stromberg J., Backstrom T., Wang M. Allopregnanolone-stimulated GABA-mediated chloride ion flux is inhibited by 3β-hydroxy-5α-pregnan-20-one (isoallopregnanolone) Brain Res. 2003;982:45–53. doi: 10.1016/S0006-8993(03)02939-1. PubMed DOI

Wang M., He Y., Eisenman L.N., Fields C., Zeng C.M., Mathews J., Benz A., Fu T., Zorumski E., Steinbach J.H., et al. 3β-hydroxypregnane steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. J. Neurosci. 2002;22:3366–3375. doi: 10.1523/JNEUROSCI.22-09-03366.2002. PubMed DOI PMC

Reddy D.S. Anticonvulsant activity of the testosterone-derived neurosteroid 3α-androstanediol. Neuroreport. 2004;15:515–518. doi: 10.1097/00001756-200403010-00026. PubMed DOI

Mtchedlishvili Z., Sun C.S., Harrison M.B., Kapur J. Increased neurosteroid sensitivity of hippocampal GABAA receptors during postnatal development. Neuroscience. 2003;118:655–666. doi: 10.1016/S0306-4522(03)00043-5. PubMed DOI PMC

Horak M., Vlcek K., Chodounska H., Vyklicky L., Jr. Subtype-dependence of N-methyl-d-aspartate receptor modulation by pregnenolone sulfate. Neuroscience. 2006;137:93–102. doi: 10.1016/j.neuroscience.2005.08.058. PubMed DOI

Traish A.M., Guay A.T., Zitzmann M. 5α-Reductase inhibitors alter steroid metabolism and may contribute to insulin resistance, diabetes, metabolic syndrome and vascular disease: A medical hypothesis. Horm. Mol. Biol. Clin. Investig. 2014;20:73–80. doi: 10.1515/hmbci-2014-0025. PubMed DOI

Hirst J.J., Kelleher M.A., Walker D.W., Palliser H.K. Neuroactive steroids in pregnancy: Key regulatory and protective roles in the foetal brain. J. Steroid Biochem. Mol. Biol. 2014;139:144–153. doi: 10.1016/j.jsbmb.2013.04.002. PubMed DOI

Milewich L., Gant N.F., Schwarz B.E., Chen G.T., MacDonald P.C. 5 α-Reductase activity in human placenta. Am. J. Obstet. Gynecol. 1979;133:611–617. doi: 10.1016/0002-9378(79)90006-1. PubMed DOI

BioGPS. Affymetrix; Santa Clara, CA, USA: 2016. 2011/11/13.

Manjunath-Gowda S., Charles C., Muneyyirci-Delale O., Nacharaju V. Cortisol metabolism in normal pregnancy and pregnancy associated with gestational diabetes. Fertil. Steril. 2013;100:S333. doi: 10.1016/j.fertnstert.2013.07.915. DOI

Upreti R., Hughes K.A., Livingstone D.E., Gray C.D., Minns F.C., Macfarlane D.P., Marshall I., Stewart L.H., Walker B.R., Andrew R. 5α-Reductase type 1 modulates insulin sensitivity in men. J. Clin. Endocrinol. Metab. 2014;99:E1397–E1406. doi: 10.1210/jc.2014-1395. PubMed DOI PMC

Nasiri M., Nikolaou N., Parajes S., Krone N.P., Valsamakis G., Mastorakos G., Hughes B., Taylor A., Bujalska I.J., Gathercole L.L., et al. 5α-Reductase type 2 regulates glucocorticoid action and metabolic phenotype in human hepatocytes. Endocrinology. 2015;156:2863–2871. doi: 10.1210/en.2015-1149. PubMed DOI PMC

Conrad D., Wang A., Pieters R., Nicoletti F., Mangano K., van Heeckeren A.M., White S.K., Frincke J.M., Reading C.L., Stickney D., et al. HE3286, an oral synthetic steroid, treats lung inflammation in mice without immune suppression. J. Inflamm. 2010;7:52. doi: 10.1186/1476-9255-7-52. PubMed DOI PMC

Li H., Lampe J.N. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch. Biochem. Biophys. 2019;673:108078. doi: 10.1016/j.abb.2019.108078. PubMed DOI PMC

Chiodini I., Adda G., Scillitani A., Coletti F., Morelli V., Di Lembo S., Epaminonda P., Masserini B., Beck-Peccoz P., Orsi E., et al. Cortisol secretion in patients with type 2 diabetes: Relationship with chronic complications. Diabetes Care. 2007;30:83–88. doi: 10.2337/dc06-1267. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Steroidogenic pathway in girls diagnosed with autism spectrum disorders

. 2024 ; 19 (12) : e0312933. [epub] 20241205

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...