Proliferation of Osteoblasts on Laser-Modified Nanostructured Titanium Surfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1412
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30261588
PubMed Central
PMC6213816
DOI
10.3390/ma11101827
PII: ma11101827
Knihovny.cz E-zdroje
- Klíčová slova
- biocompatibility, laser treatment, nanostructured titanium, osteoblasts proliferation,
- Publikační typ
- časopisecké články MeSH
Nanostructured titanium has become a useful material for biomedical applications such as dental implants. Certain surface properties (grain size, roughness, wettability) are highly expected to promote cell adhesion and osseointegration. The aim of this study was to compare the biocompatibilities of several titanium materials using human osteoblast cell line hFOB 1.19. Eight different types of specimens were examined: machined commercially pure grade 2 (cpTi2) and 4 (cpTi4) titanium, nanostructured titanium of the same grades (nTi2, nTi4), and corresponding specimens with laser-treated surfaces (cpTi2L, cpTi4L, nTi2L, nTi4L). Their surface topography was evaluated by means of scanning electron microscopy. Surface roughness was measured using a mechanical contact profilometer. Specimens with laser-treated surfaces had significantly higher surface roughness. Wettability was measured by the drop contact angle method. Nanostructured samples had significantly higher wettability. Cell proliferation after 48 hours from plating was assessed by viability and proliferation assay. The highest proliferation of osteoblasts was found in nTi4 specimens. The analysis of cell proliferation revealed a difference between machined and laser-treated specimens. The mean proliferation was lower on the laser-treated titanium materials. Although plain laser treatment increases surface roughness and wettability, it does not seem to lead to improved biocompatibility.
Zobrazit více v PubMed
Banerjee D., Williams J.C. Perspectives on titanium science and technology. Acta Mater. 2013;61:844–879. doi: 10.1016/j.actamat.2012.10.043. DOI
Greger M., Cerny M., Kander L., Kliber J. Structure and properties of titanium for dental implants. Metalurgija. 2009;48:249–252.
Ozcan M., Hammerle C. Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls. Materials. 2012;5:1528–1545. doi: 10.3390/ma5091528. DOI
Ehtemam-Haghighi S., Cao G.H., Zhang L.C. Nanoindentation study of mechanical properties of Ti based alloys with Fe and Ta additions. J. Alloy Compd. 2017;692:892–897. doi: 10.1016/j.jallcom.2016.09.123. DOI
Ortiz A.J., Fernandez E., Vicente A., Guirado J.L.C., Ortiz C. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage. Am. J. Orthod. Dentofac. Orthop. 2018;153:765. doi: 10.1016/j.ajodo.2011.02.021. PubMed DOI
De Morais L.S., Serra G.G., Albuquerque Palermo E.F., Andrade L.R., Müller C.A., Meyers M.A., Elias C.N. Systemic levels of metallic ions released from orthodontic mini-implants. Am. J. Orthod. Dentofac. Orthop. 2009;135:522–529. doi: 10.1016/j.ajodo.2007.04.045. PubMed DOI
Ehtemam-Haghighi S., Liu Y.J., Cao G.H., Zhang L.C. Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition. Mater. Des. 2016;97:279–286. doi: 10.1016/j.matdes.2016.02.094. DOI
Ehtemam-Haghighi S., Liu Y.J., Cao G.H., Zhang L.C. Influence of Nb on the β → α” martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys. Mater. Sci. Eng. C. 2016;60:503–510. doi: 10.1016/j.msec.2015.11.072. PubMed DOI
Valiev R.Z., Krasilnikov N.A., Tsenev N.K. Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A. 1991;137:35–40. doi: 10.1016/0921-5093(91)90316-F. DOI
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9. DOI
Valiev R.Z., Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Qarni M.J., Sivaswamy G., Rosochowski A., Boczkal S. Effect of incremental equal channel angular pressing (I-ECAP) on the microstructural characteristics and mechanical behaviour of commercially pure titanium. Mater. Des. 2017;122:385–402. doi: 10.1016/j.matdes.2017.03.015. DOI
Williams D.F. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941–2953. doi: 10.1016/j.biomaterials.2008.04.023. PubMed DOI
Bansal R., Singh J.K., Singh V., Singh D.D.N., Das P. Optimization of oxidation temperature for commercially pure titanium to achieve improved corrosion resistance. J. Mater. Eng. Perform. 2017;26:969–977. doi: 10.1007/s11665-017-2515-z. DOI
Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces Part I: Materials and surfaces. Prog. Mater. Sci. 2013;58:261–326. doi: 10.1016/j.pmatsci.2012.09.001. DOI
Babuska V., Dobra J., Kulda V., Kripnerova M., Moztarzadeh A., Bolek L., Lahoda J., Hrusak D. Comparison of fibroblast and osteoblast response to cultivation on titanium implants with different grain sizes. J. Nanomater. 2015;2015 doi: 10.1155/2015/920893. DOI
Thirugnanam A., Sampath Kumar T.S., Chakkingal U. Processing and bioactivity evaluation of ultrafine-grained titanium. Ceram. Trans. 2013;242:125–136.
Ostrovska L., Vistejnova L., Dzugan J., Slama P., Kubina T., Ukraintsev E., Kubies D., Kralickova M., Hubalek Kalbacova M. Biological evaluation of ultra-fine titanium with improved mechanical strength for dental implant engineering. J. Mater. Sci. 2016;51:3097–3110. doi: 10.1007/s10853-015-9619-3. DOI
Babuska V., Moztarzadeh O., Kubikova T., Moztarzadeh A., Hrusak D., Tonar Z. Evaluating the osseointegration of nanostructured titanium implants in animal models: Current experimental methods and perspectives (review) Biointerphases. 2016;11:030801. doi: 10.1116/1.4958793. PubMed DOI
Zhou Q., Wang L., Zou C.H. Enhanced surface precipitates on ultrafine-grained titanium in physiological solution. Metals. 2017;7:245. doi: 10.3390/met7070245. DOI
Burgos-Asperilla L., Garcia-Alonso M.C., Escudero M.L., Alonso C. Study of the interaction of inorganic and organic compounds of cell culture medium with a Ti surface. Acta Biomater. 2010;6:652–661. doi: 10.1016/j.actbio.2009.06.019. PubMed DOI
Jäger M., Jennissen H.P., Dittrich F., Fischer A., Köhling H.L. Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants. Materials. 2017;10:1302. doi: 10.3390/ma10111302. PubMed DOI PMC
Moztarzadeh A., Moztarzadeh O., Kubikova T., Tonar Z., Hrusak D., Zicha A., Babuska V. Current methods for assessing osseointegration of nanostructured titanium implants. Chem. Listy. 2018;112:148–158.
de Siqueira R.A.C., Fontao F.N.G.K., Sartori I.A.D.M., Santos P.G.F., Bernardes S.R., Tiossi R. Effect of different implant placement depths on crestal bone levels and soft tissue behavior: a randomized clinical trial. Clin. Oral Implants Res. 2017;28:1227–1233. doi: 10.1111/clr.12946. PubMed DOI
Lin Y., Huang C.F., Cheng H.C., Shen Y.K. A modified surface on titanium alloy by micro-blasting process. Adv. Mater. Res. 2013;797:696–699. doi: 10.4028/www.scientific.net/AMR.797.696. DOI
Nazarov D.V., Zemtsova E.G., Solokhin A., Valiev R.Z., Smirnov V.M. Modification of the surface topography and composition of ultrafine and coarse grained titanium by chemical etching. Nanomaterials. 2017;7:15. doi: 10.3390/nano7010015. PubMed DOI PMC
Chappuis V., Buser R., Bragger U., Bornstein M.M., Salvi G.E., Buser D. Long-term outcomes of dental implants with a titanium plasma-sprayed surface: A 20-year prospective case series study in partially edentulous patients. Clin. Implant Dent. Relat. Res. 2013;15:780–790. doi: 10.1111/cid.12056. PubMed DOI
Kim S.E., Lim J.H., Lee S.C., Nam S.C., Kang H.G., Choi J. Anodically nanostructured titanium oxides for implant applications. Electrochim. Acta. 2008;53:4846–4851. doi: 10.1016/j.electacta.2008.02.005. DOI
Joob-Fancsaly A., Divinyi T., Fazekas A., Daroczi C., Karacs A., Peto G. Pulsed laser-induced micro- and nanosized morphology and composition of titanium dental implants. Smart Mater. Struct. 2002;11:819–824. doi: 10.1088/0964-1726/11/5/330. DOI
Cei S., Legitimo A., Barachini S., Consolini R., Sammartino G., Mattii L., Gabriele M., Graziani F. Effect of laser micromachining of titanium on viability and responsiveness of osteoblast-like cells. Implant Dent. 2011;20:285–291. doi: 10.1097/ID.0b013e31821bfa9f. PubMed DOI
Zwahr C., Gunther D., Brinkmann T., Gulow N., Oswald S., Holthaus M.G., Lasagni A.F. Laser surface pattering of titanium for improving the biological performance of dental implants. Adv. Healthc. Mater. 2017;6:1600858. doi: 10.1002/adhm.201600858. PubMed DOI
Ayubianmarkazi N., Karimi M., Koohkan S., Sanasa A., Foroutan T. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells on SLA titanium surfaces irradiated by different powers of CO2 lasers. Lasers Med. Sci. 2015;30:2129–2134. doi: 10.1007/s10103-015-1756-z. PubMed DOI
Furukawa M., Horita Z., Nemoto M., Langdon T.G. Processing of metals by equal-channel angular pressing. J. Mater. Sci. 2001;36:2835–2843. doi: 10.1023/A:1017932417043. DOI
Palan J., Malecek L., Hodek J., Zemko M., Dzugan J. Possibilities of biocompatible material production using conform SPD technology. Arch. Mater. Sci. Eng. 2017;88:5–11. doi: 10.5604/01.3001.0010.7746. DOI
Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M.J., Zhu Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later. JOM. 2016;68:1216–1226. doi: 10.1007/s11837-016-1820-6. DOI
Harris S.A., Enger R.J., Riggs B.L., Spelsberg T.C. Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J. Bone Miner. Res. 1995;10:178–186. doi: 10.1002/jbmr.5650100203. PubMed DOI
Jemat A., Ghazali M.J., Razali M., Otsuka Y. Surface modifications and their effects on titanium dental implants. Biomed. Res. Int. 2015;2015:791725. doi: 10.1155/2015/791725. PubMed DOI PMC
Hanawa T. Biofunctionalization of titanium for dental implant. Jpn. Dent. Sci. Rev. 2010;46:93–101. doi: 10.1016/j.jdsr.2009.11.001. DOI
Castner D.G. Biomedical surface analysis: Evolution and future directions (Review) Biointerphases. 2017;12:02C301. doi: 10.1116/1.4982169. PubMed DOI PMC
Kim T.N., Balakrishnan A., Lee B.C., Kim W.S., Smetana K., Park J.K., Panigrahi B.B. In vitro biocompatibility of equal channel angular processed (ECAP) titanium. Biomed. Mater. 2007;2:S117–S120. doi: 10.1088/1748-6041/2/3/S06. PubMed DOI
Kim T.N., Balakrishnan A., Lee B.C., Dvorankova B., Smetana K., Park J.K., Panigrahi B.B. In vitro fibroblast response to ultrafine grained titanium produced by a severe plastic deformation process. J. Mater. Sci. Mater. Med. 2008;19:553–557. doi: 10.1007/s10856-007-3204-5. PubMed DOI
Estrin Y., Ivanova E.P., Michalska A., Truong V.K., Lapovok R., Boyd R. Accelerated stem cell attachment to ultrafine grained titanium. Acta Biomater. 2011;7:900–906. doi: 10.1016/j.actbio.2010.09.033. PubMed DOI
Farzin A., Ahmadian M., Fathi M.H. Comparative evaluation of biocompatibility of dense nanostructured and microstructured Hydroxyapatite/Titania composites. Mater. Sci. Eng. C. 2013;33:2251–2257. doi: 10.1016/j.msec.2013.01.053. PubMed DOI
Geblinger D., Addadi L., Geiger B. Nano-topography sensing by osteoclasts. J. Cell Sci. 2010;123:1503–1510. doi: 10.1242/jcs.060954. PubMed DOI PMC
Martinez E., Engel E., Planell J.A., Samitier J. Effects of artificial micro- and nano-structured surfaces on cell behaviour. Ann. Anat. 2009;191:126–135. doi: 10.1016/j.aanat.2008.05.006. PubMed DOI
Martin J.Y., Schwartz Z., Hummert T.W., Schraub D.M., Simpson J., Lankford J., Dean D.D., Cochran D.L., Boyan B.D. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63) J. Biomed. Mater. Res. 1995;29:389–401. doi: 10.1002/jbm.820290314. PubMed DOI
Lincks J., Boyan B.D., Blanchard C.R., Lohmann C.H., Liu Y., Cochran D.L., Dean D.D., Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials. 1998;19:2219–2232. doi: 10.1016/S0142-9612(98)00144-6. PubMed DOI
Györgyey A., Ungvari K., Kecskemeti G., Kopniczky J., Hopp B., Oszko A., Pelsöczi I., Rakonczay Z., Nagy K., Turzo K. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater. Sci. Eng. C. 2013;33:4251–4259. doi: 10.1016/j.msec.2013.06.020. PubMed DOI
Trtica M.S., Radak B.B., Gakovic B.M., Milovanovic D.S., Batani D., Desai T. Surface modifications of Ti6A14V by a picosecond Nd: YAG laser. Laser Part. Beams. 2009;27:85–90. doi: 10.1017/S0263034609000123. DOI
Hindy A., Farahmand F., Tabatabaei F. In vitro biological outcome of laser application for modification or processing of titanium dental implants. Laser Med. Sci. 2017;32:1197–1206. doi: 10.1007/s10103-017-2217-7. PubMed DOI
Eriksson C., Nygren H., Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials. 2004;25:4759–4766. doi: 10.1016/j.biomaterials.2003.12.006. PubMed DOI
Bächle M., Kohal R.J. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin. Oral Implants Res. 2004;15:683–692. doi: 10.1111/j.1600-0501.2004.01054.x. PubMed DOI
Wilson C.J., Clegg R.E., Leavesley D.I., Pearcy M.J. Mediation of biomaterial–cell interactions by adsorbed proteins: A review. Tissue Eng. 2005;11:1–18. doi: 10.1089/ten.2005.11.1. PubMed DOI
Andrade J.D., Hlady V. Protein adsorption and materials biocompatibility - a tutorial review and suggested hypotheses. Adv. Polym. Sci. 1986;79:1–63.
Gittens R.A., Scheideler L., Rupp F., Hyzy S.L., Geis-Gerstorfer J., Schwartz Z., Boyan B.D. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014;10:2907–2918. doi: 10.1016/j.actbio.2014.03.032. PubMed DOI PMC
Koper J.K., Jakubowicz J. Correlation of wettability with surface structure and morphology of the anodically oxidized titanium implants. J. Biomater. Tissue Eng. 2014;4:459–464. doi: 10.1166/jbt.2014.1192. DOI
Bodhak S., Bose S., Bandyopadhyay A. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater. 2009;5:2178–2188. doi: 10.1016/j.actbio.2009.02.023. PubMed DOI
Schakenraad J.M., Busscher H.J., Wildevuur C.R.H., Arends J. The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J. Biomed. Mater. Res. 1986;20:773–784. doi: 10.1002/jbm.820200609. PubMed DOI
Chikarakara E., Fitzpatrick P., Moore E., Levingstone T., Grehan L., Higginbotham C., Vazquez M., Bagga K., Naher S., Brabazon D. In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V. Biomed. Mater. 2015;10:015007. doi: 10.1088/1748-6041/10/1/015007. PubMed DOI
Ciganovic J., Stasic J., Gakovic B., Momcilovic M., Milovanovic D., Bokorov M., Trtica M. Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres—Comparative study. Appl. Surf. Sci. 2012;258:2741–2748. doi: 10.1016/j.apsusc.2011.10.125. DOI
Sisti K.E., de Andres M.C., Johnston D., Almeida-Filho E., Guastaldi A.C., Oreffo R.O.C. Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification. Biochem. Biophys. Res. Commun. 2016;473:719–725. doi: 10.1016/j.bbrc.2015.10.013. PubMed DOI
Zhang R., Wan Y., Ai X., Wang T., Men B. Preparation of micro-nanostructure on titanium implants and its bioactivity. Trans. Nonferr. Met. Soc. China. 2016;26:1019–1024. doi: 10.1016/S1003-6326(16)64217-6. DOI
Zheng C.Y., Nie F.L., Zheng Y.F., Cheng Y., Wei S.C., Valiev R.Z. Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface. Appl. Surf. Sci. 2011;257:5634–5640. doi: 10.1016/j.apsusc.2011.01.062. DOI
Kunzler T.P., Huwiler C., Drobek T., Voros J., Spencer N.D. Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. Biomaterials. 2007;28:5000–5006. doi: 10.1016/j.biomaterials.2007.08.009. PubMed DOI
Gui N., Xu W., Abraham A.N., Myers D.E., Mayes E.L.H., Xia K., Shukla R., Qian M. A comparative study of the effect of submicron porous and smooth ultrafine-grained Ti-20Mo surfaces on osteoblast responses. J. Biomed. Mater. Res. A. 2018;106:2020–2033. doi: 10.1002/jbm.a.36402. PubMed DOI
Mariscal-Muñoz E., Costa C.A.S., Tavares H.S., Bianchi J., Hebling J., Machado J.P.B., Lerner U.H., Souza P.P.C. Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb:YAG laser irradiation. Clin. Oral Investig. 2016;20:503–511. doi: 10.1007/s00784-015-1533-1. PubMed DOI
Human cells with osteogenic potential in bone tissue research
Repeated Exposure of Nanostructured Titanium to Osteoblasts with Respect to Peri-Implantitis