Laser Surface Modification of Powder Metallurgy-Processed Ti-Graphite Composite Which Can Enhance Cells' Osteo-Differentiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 2/0135/20
Ministry od Education, Research, Science and Sport of the Slovak Republic
KEGA No. 022STU-4/2019
Ministry od Education, Research, Science and Sport of the Slovak Republic
PROGRES Q26
Charles University, Czech Republic
PubMed
34683656
PubMed Central
PMC8537964
DOI
10.3390/ma14206067
PII: ma14206067
Knihovny.cz E-zdroje
- Klíčová slova
- biocompatibility, graphite–titanium composite, laser micromachining, osteo-differentiation, stem cell, surface morphology,
- Publikační typ
- časopisecké články MeSH
The paper examines the surface functionalization of a new type of Ti-graphite composite, a dental biomaterial prepared by vacuum low-temperature extrusion of hydrogenated-dehydrogenated titanium powder mixed with graphite flakes. Two experimental surfaces were prepared by laser micromachining applying different levels of incident energy of the fiber nanosecond laser working at 1064 nm wavelength. The surface integrity of the machined surfaces was evaluated, including surface roughness parameters measurement by contact profilometry and confocal laser scanning microscopy. The chemical and phase composition were comprehensively evaluated by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analyses. Finally, the in vitro tests using human mesenchymal stem cells were conducted to compare the influence of the laser processing parameters used on the cell's cultivation and osteo-differentiation. The bioactivity results confirmed that the surface profile with positive kurtosis, platykurtic distribution curve and higher value of peaks spacing exhibited better bioactivity compared to the surface profile with negative kurtosis coefficient, leptokurtic distribution curve and lower peaks spacing.
Zobrazit více v PubMed
Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog. Mater. Sci. 2013;58:261–326. doi: 10.1016/j.pmatsci.2012.09.001. DOI
Lukaszewska-Kuska M., Wirstlein P., Majchrowski R., Dorocka-Bobkowska B. Osteoblastic cell behaviour on modified titanium surfaces. Micron. 2018;105:55–63. doi: 10.1016/j.micron.2017.11.010. PubMed DOI
Shimabukuro M., Ito H., Tsutsumi Y., Nozaki K., Chen P., Yamada R., Ashida M., Nagai A., Hanawa T. The Effects of Various Metallic Surfaces on Cellular and Bacterial Adhesion. Metals. 2019;9:1145. doi: 10.3390/met9111145. DOI
Velasco-Ortega E., Ortiz-García I., Jiménez-Guerra A., Monsalve-Guil L., Muñoz-Guzón F., Perez R.A., Gil F.J. Comparison between sandblasted acid-etched and oxidized titanium dental implants: In vivo study. Int. J. Mol. Sci. 2019;20:3267. doi: 10.3390/ijms20133267. PubMed DOI PMC
Devgan S., Sidhu S.S. Evolution of surface modification trends in bone related biomaterials: A review. Mater. Chem. Phys. 2019;233:68–78. doi: 10.1016/j.matchemphys.2019.05.039. DOI
Kaur M., Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C. 2019;102:844–862. doi: 10.1016/j.msec.2019.04.064. PubMed DOI
Gnilitskyi I., Pogorielov M., Viter R., Ferraria A.M., Carapeto A.P., Oleshko O., Orazi L., Mishchenko O. Cell and tissue response to nanotextured Ti6Al4V and Zr implants using high-speed femtosecond laser-induced periodic surface structures. Nanomed. Nanotechnol. Biol. Med. 2019;21:102036. doi: 10.1016/j.nano.2019.102036. PubMed DOI
Klos A., Sedao X., Itina T.E., Helfenstein-Didier C., Donnet C., Peyroche S., Vico L., Guignandon A., Dumas V. Ultrafast Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy. Nanomaterials. 2020;10:864. doi: 10.3390/nano10050864. PubMed DOI PMC
Nicolas-Silvente A.I., Velasco-Ortega E., Ortiz-Garcia I., Monsalve-Guil L., Gil J., Jimenez-Guerra A. Influence of the Titanium Implant Surface Treatment on the Surface Roughness and Chemical Composition. Materials. 2020;13:314. doi: 10.3390/ma13020314. PubMed DOI PMC
Velasco-Ortega E., Alfonso-Rodríguez C.A., Monsalve-Guil L., España-López A., Jiménez-Guerra A., Garzón I., Alaminos M., Gil F.J. Relevant aspects in the surface properties in titanium dental implants for the cellular viability. Mater. Sci. Eng. C. 2016;64:1–10. doi: 10.1016/j.msec.2016.03.049. PubMed DOI
Ehrenfest D.M.D., Coelho P.G., Kang B.S., Sul Y.T., Albrektsson T. Classification of osseointegrated implant surfaces: Materials, chemistry and topography. Trends Biotechnol. 2010;28:198–206. doi: 10.1016/j.tibtech.2009.12.003. PubMed DOI
Rodríguez Á., Trueba P., Amado J.M., Tobar M.J., Giner M., Amigó V., Torres Y. Surface Modification of Porous Titanium Discs Using Femtosecond Laser Structuring. Metals. 2020;10:748. doi: 10.3390/met10060748. DOI
Wennerberg A., Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral Implant. Res. 2009;20:172–184. doi: 10.1111/j.1600-0501.2009.01775.x. PubMed DOI
Kalbacova M., Rezek B., Baresova V., Wolf-Brandstetter C., Kromka A. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts. Acta Biomater. 2009;5:3076–3085. doi: 10.1016/j.actbio.2009.04.020. PubMed DOI
Pacha-Olivenza M.Á., Tejero R., Fernández-Calderón M.C., Anitua E., Troya M., González-Martín M.L. Relevance of Topographic Parameters on the Adhesion and Proliferation of Human Gingival Fibroblasts and Oral Bacterial Strains. BioMed Res. Int. 2019;2019:8456342. doi: 10.1155/2019/8456342. PubMed DOI PMC
Kunzler T.P., Drobek T., Schuler M., Spencer N.D. Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials. 2007;28:2175–2182. doi: 10.1016/j.biomaterials.2007.01.019. PubMed DOI
Wu J., Yitelli J.P., TenHuisen K.S., Zu X., Libera M.R. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials. 2011;32:951–960. doi: 10.1016/j.biomaterials.2010.10.001. PubMed DOI
Grishina I.P., Telegin S.V., Lyasnikova A.V., Markelova O.A., Dudareva O.A. Development of the Combined Technology of Modification of the Surface of Titanium Implants by Laser Radiation with Subsequent Plasma Spraying of Biocompatible Coatings. Metallurgist. 2019;63:215–220. doi: 10.1007/s11015-019-00812-z. DOI
Koshuro V., Fomin A., Rodionov I. Composition, structure and mechanical properties of metal oxide coatings produced on titanium using plasma spraying and modified by micro-arc oxidation. Ceram. Int. 2018;44:12593–12599. doi: 10.1016/j.ceramint.2018.04.056. DOI
Uddin G.M., Jawad M., Ghufran M., Saleem M.W., Raza M.A., Rehman Z.U., Arafat S.M., Irfan M., Waseem B. Experimental investigation of tribo-mechanical and chemical properties of TiN PVD coating on titanium substrate for biomedical implants manufacturing. Int. J. Adv. Manuf. Technol. 2019;102:1391–1404. doi: 10.1007/s00170-018-03244-2. DOI
Szili E.J., Kumar S., Smart R.S.C., Voelcker N.H. Generation of a stable surface concentration of amino groups on silica coated onto titanium substrates by the plasma enhanced chemical vapour deposition method. Appl. Surf. Sci. 2009;255:6846–6850. doi: 10.1016/j.apsusc.2009.02.092. DOI
Kulkarni A.A., Pushalkar S., Zhao M., LeGeros R.Z., Zhang Y., Saxena D. Antibacterial and bioactive coatings on titanium implant surfaces. J. Biomed. Mater. Res. Part A. 2017;105:2218–2227. doi: 10.1002/jbm.a.36081. PubMed DOI PMC
Stevanović M., Djošić M., Janković A., Nešović K., Kojić V., Stojanović J., Grujić S., Bujagić I.M., Rhee K.Y., Stanković V.M. Assessing the Bioactivity of Gentamicin-Preloaded Hydroxyapatite/Chitosan Composite Coating on Titanium Substrate. ACS Omega. 2020;5:15433–15445. doi: 10.1021/acsomega.0c01583. PubMed DOI PMC
Kim S., Park C., Cheon K.H., Jung H.D., Song J., Kim H.E., Jang T.S. Antibacterial and bioactive properties of stabilized silver on titanium with a nanostructured surface for dental applications. Appl. Surf. Sci. 2018;451:232–240. doi: 10.1016/j.apsusc.2018.04.270. DOI
Su Y., Luo C., Zhang Z., Hermawan H., Zhu D., Huang J., Liang Y., Li G., Ren L. Bioinspired surface functionalization of metallic biomaterials. J. Mech. Behav. Biomed. Mater. 2018;77:90–105. doi: 10.1016/j.jmbbm.2017.08.035. PubMed DOI
Malhotra R., Han Y.M., Morin J.L.P., Luong-Van E.K., Chew R.J.J., Castro Neto A.H., Nijhuis C.A., Rosa V. Inhibiting Corrosion of Biomedical-Grade Ti-6Al-4V Alloys with Graphene Nanocoating. J. Dent. Res. 2020;99:285–292. doi: 10.1177/0022034519897003. PubMed DOI
Salou L., Hoornaert A., Louarn G., Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta Biomater. 2015;11:494–502. doi: 10.1016/j.actbio.2014.10.017. PubMed DOI
Herrero-Climent M., Lázaro P., Rios J.V., Lluch S., Marqués-Calvo M.S., Guillem-Martí J., Gil F.J. Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: In vitro and in vivo studies. J. Mater. Sci. Mater. Med. 2013;24:2047–2055. doi: 10.1007/s10856-013-4935-0. PubMed DOI
Shah F.A., Stenlund P., Martinelli A., Thomsen P., Palmquist A. Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography. J. Mater. Sci. Mater. Med. 2016;27:167. doi: 10.1007/s10856-016-5779-1. PubMed DOI PMC
Dhobe S.D., Doloi B., Bhattacharyya B. Surface characteristics of ECMed titanium work samples for biomedical applications. Int. J. Adv. Manuf. Technol. 2011;55:177–188. doi: 10.1007/s00170-010-3040-5. DOI
Rajab F.H., Liauw C.M., Benson P.S., Li L., Whitehead K.A. Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics. Colloids Surf. B Biointerfaces. 2017;160:688–696. doi: 10.1016/j.colsurfb.2017.10.008. PubMed DOI
Ferraris S., Bobbio A., Miola M., Spriano S. Micro- and nano-textured, hydrophilic and bioactive titanium dental implants. Surf. Coat. Technol. 2015;276:374–383. doi: 10.1016/j.surfcoat.2015.06.042. DOI
Rosa M.B., Albrektsson T., Francischone C.E., Schwartz Filho H.O., Wennerberg A. The influence of surface treatment on the implant roughness pattern. J. Appl. Oral Sci. 2012;20:550–555. doi: 10.1590/S1678-77572012000500010. PubMed DOI PMC
Oliveira V., Ausset S., Vilar R. Surface micro/nanostructuring of titanium under stationary and non-stationary femtosecond laser irradiation. Appl. Surf. Sci. 2009;255:7556–7560. doi: 10.1016/j.apsusc.2009.04.027. DOI
Böker K.O., Kleinwort F., Klein-Wiele J.H., Simon P., Jäckle K., Taheri S., Lehmann W., Schilling A.F. Laser ablated periodic nanostructures on titanium and steel implants influence adhesion and osteogenic differentiation of mesenchymal stem cells. Materials. 2020;13:3526. doi: 10.3390/ma13163526. PubMed DOI PMC
Györgyey Á., Ungvári K., Kecskeméti G., Kopniczky J., Hopp B., Oszkó A., Pelsöczi I., Rakonczay Z., Nagy K., Turzó K. Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater. Sci. Eng. C. 2013;33:4251–4259. doi: 10.1016/j.msec.2013.06.020. PubMed DOI
Faeda R.S., Tavares H.S., Sartori R., Guastaldi A.C., Marcantonio E. Evaluation of titanium implants with surface modification by laser beam. Biomechanical study in rabbit tibias. Braz. Oral Res. 2009;23:137–143. doi: 10.1590/S1806-83242009000200008. PubMed DOI
Borcherding K., Marx D., Gätjen L., Specht U., Salz D., Thiel K., Wildemann B., Grunwald I. Impact of laser structuring on medical-grade titanium: Surface characterization and in vitro evaluation of osteoblast attachment. Materials. 2020;13:2000. doi: 10.3390/ma13082000. PubMed DOI PMC
Dumas V., Guignandon A., Vico L., Mauclair C., Zapata X., Linossier M.T., Bouleftour W., Granier J., Peyroche S., Dumas J.C., et al. Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomed. Mater. 2015;10:055002. doi: 10.1088/1748-6041/10/5/055002. PubMed DOI
Yoruç A.B.H., Keleşoğlu E., Yıldız H.E. In vitro bioactivity of laser surface-treated Ti6Al4V alloy. Lasers Med. Sci. 2019;34:1567–1573. doi: 10.1007/s10103-019-02746-z. PubMed DOI
Kuczyńska-Zemła D., Kijeńska-Gawrońska E., Pisarek M., Borowicz P., Swieszkowski W., Garbacz H. Effect of laser functionalization of titanium on bioactivity and biological response. Appl. Surf. Sci. 2020;525:146492. doi: 10.1016/j.apsusc.2020.146492. DOI
Wedemeyer C., Jablonski H., Mumdzic-Zverotic A., Fietzek H., Mertens T., Hilken G., Krüger C., Wissmann A., Heep H., Schlepper R., et al. Laser-induced nanostructures on titanium surfaces ensure osseointegration of implants in rabbit femora. Materialia. 2019;6:100266. doi: 10.1016/j.mtla.2019.100266. DOI
Babuska V., Palan J., Dobra J.K., Kulda V., Duchek M., Cerny J., Hrusak D. Proliferation of osteoblasts on laser-modified nanostructured titanium surfaces. Materials. 2018;11:1827. doi: 10.3390/ma11101827. PubMed DOI PMC
Šugár P., Ludrovcová B., Kováčik J., Sahul M., Šugárová J. Laser-based ablation of titanium-graphite composite for dental application. Materials. 2020;13:2312. doi: 10.3390/ma13102312. PubMed DOI PMC
Ludrovcová B., Šugár P., Sahul M., Kováčik J., Czibor Z. Oxidation of Biocompatible Graphite–Ti Composite after Laser Ablation in Different Atmospheres. IOP Conf. Ser. Mater. Sci. Eng. 2020;987:012032. doi: 10.1088/1757-899X/987/1/012032. DOI
EN ISO 4288:1997—Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture (ISO 4288:1996) [(accessed on 7 December 2020)]. Available online: https://standards.iteh.ai/catalog/standards/cen/234bef88-8bd6-42c1-9fda-5b2589f280d4/en-iso-4288-1997.
Dos Santos Bonfim P.K., Ciuccio R., das Neves M.D.M. Development of Titanium Dental Implants Using Techniques of Powder Metallurgy. Mater. Sci. Forum. 2014;775:13–18. doi: 10.4028/www.scientific.net/MSF.775-776.13. DOI
Antończak A.J., Skowroński J., Trzcinski M., Kinzhybalo V.V., Łazarek Ł.K., Abramski K.M. Laser-induced oxidation of titanium substrate: Analysis of thephysicochemical structure of the surface and sub-surface layers. Appl. Surf. Sci. 2015;325:217–226. doi: 10.1016/j.apsusc.2014.11.062. DOI
Tavakoli J., Khosroshah M.E. Surface morphology characterization of laser-induced titanium implants: Lesson to enhance osseointegration process. Biomed. Eng. Lett. 2018;8:249–257. doi: 10.1007/s13534-018-0063-6. PubMed DOI PMC
Wang Y., Yu Y., Li K., Hu J. Effects of surface properties of titanium alloys modified by grinding, sandblasting and acidizing and nanosecond laser on cell proliferation and cytoskeleton. Appl. Surf. Sci. 2020;501:144279. doi: 10.1016/j.apsusc.2019.144279. DOI
Šugár P., Kováčik J., Šugárová J., Ludrovcová B. A Study of Laser Micromachining of PM Processed Ti Compact for Dental Implants Applications. Materials. 2019;12:2246. doi: 10.3390/ma12142246. PubMed DOI PMC
Beijer N.R.M., Nauryzgaliyeva Z.M., Arteaga E.M., Pieuchot L., Anselme K., van de Peppel J., Vasilevich A.S., Groen N., Roumans N., Hebels D.G.A.J., et al. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns. Sci. Rep. 2019;9:9099. doi: 10.1038/s41598-019-45284-y. PubMed DOI PMC
Kalbacova M., Broz A., Kalbac M. Influence of the fetal bovine serum proteins on the growth of human osteoblast cells on graphene. J. Biomed. Mater. Res. Part A. 2012;100A:3001–3007. doi: 10.1002/jbm.a.34231. PubMed DOI
Dobbenga S., Fratila-Apachitei L.E., Zadpoor A.A. Nanopattern-induced osteogenic differentiation of stem cells—A systematic review. Acta Biomater. 2016;46:3–14. doi: 10.1016/j.actbio.2016.09.031. PubMed DOI
Faia-Torres A.B., Guimond-Lischer S., Rottmar M., Charnley M., Goren T., Maniura-Weber K., Spencer N.D., Reis R.L., Textor M., Neves N.M. Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials. 2014;35:9023–9032. doi: 10.1016/j.biomaterials.2014.07.015. PubMed DOI
Fouziya B., Uthappa M.A., Amara D. Surface modifications of titanium implants–The new, the old, and the never heard of options. J. Adv. Clin. Res. Insights. 2016;3:215–219. doi: 10.15713/ins.jcri.142. DOI
Sirdeshmukh N., Dongre G. Laser micro & nano surface texturing for enhancing osseointegration and antimicrobial effect of biomaterials: A review. Mater. Today Proc. 2021;44:2348–2355. doi: 10.1016/j.matpr.2020.12.433. DOI