Study on Surface Roughness, Morphology, and Wettability of Laser-Modified Powder Metallurgy-Processed Ti-Graphite Composite Intended for Dental Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 2/0054/23 and KEGA 026STU-4/2023
Ministry of Education, Science, Research and Sport of the Slovak Republic
2/0054/23
Laser surface modification of Ti -TiB2 biocom-posites prepared by powder metallurgy process in order to increase their osseointegration
026STU-4/2023
Implementation of innovative learning methods and practical training to education in the field of production technologies and production management to increase the attractiveness of study and support the key competencies of the students
KOMPLAS
The research of the laser modified surfaces of biomedical Ti-based material prepared by powder metallurgy way
PubMed
38135997
PubMed Central
PMC10740645
DOI
10.3390/bioengineering10121406
PII: bioengineering10121406
Knihovny.cz E-zdroje
- Klíčová slova
- composite, contact angle, laser, machining, morphology, powder metallurgy, roughness, surface, titanium,
- Publikační typ
- časopisecké články MeSH
In this study, the surface laser treatment of a new type of dental biomaterial, a Ti-graphite composite, prepared by low-temperature powder metallurgy, was investigated. Different levels of output laser power and the scanning speed of the fiber nanosecond laser with a wavelength of 1064 nm and argon as a shielding gas were used in this experiment. The surface integrity of the machined surfaces was evaluated to identify the potential for the dental implant's early osseointegration process, including surface roughness parameter documentation by contact and non-contact methods, surface morphology assessment by scanning electron microscopy, and surface wettability estimation using the sessile drop technique. The obtained results showed that the surface roughness parameters attributed to high osseointegration relevance (Rsk, Rku, and Rsm) were not significantly influenced by laser power, and on the other hand, the scanning speed seems to have the most prevalent effect on surface roughness when exhibiting statistical differences in all evaluated profile roughness parameters except Rvk. The obtained laser-modified surfaces were hydrophilic, with a contact angle in the range of 62.3° to 83.2°.
Zobrazit více v PubMed
Sypniewska J., Szkodo M. Influence of Laser Modification on the Surface Character of Biomaterials: Titanium and Its Alloys—A Review. Coatings. 2022;12:1371. doi: 10.3390/coatings12101371. DOI
bin Fadzil A.F.A., Pramanik A., Basak A.K., Prakash C., Shankar S. Role of surface quality on biocompatibility of implants—A review. Ann. 3D Print. Med. 2022;8:100082. doi: 10.1016/j.stlm.2022.100082. DOI
Stepanovska J., Matejka R., Rosina J., Bacakova L., Kolarova H. Treatments for enhancing the biocompatibility of titanium implants. Biomed. Pap. 2020;164:23–33. doi: 10.5507/bp.2019.062. PubMed DOI
Uhlmann E., Schweitzer L., Kieburg H., Spielvogel A., Huth-Herms K. The Effects of Laser Microtexturing of Biomedical Grade 5 Ti-6Al-4V Dental Implants (Abutment) on Biofilm Formation. Procedia CIRP. 2018;68:184–189. doi: 10.1016/j.procir.2017.12.044. DOI
Medvids A., Onufrijevs P., Kaupužs J., Eglitis R., Padgurskas J., Zunda A., Mimura H., Skadins I., Varnagiris S. Anatase or rutile TiO2 nanolayer formation on Ti substrates by laser radiation: Mechanical, photocatalytic and antibacterial properties. Opt. Laser Technol. 2021;138:106898. doi: 10.1016/j.optlastec.2020.106898. DOI
Shah F.A., Thomsen P., Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1–15. doi: 10.1016/j.actbio.2018.11.018. PubMed DOI
Li J., Zhou P., Attarilar S., Shi H. Innovative Surface Modification Procedures to Achieve Micro/Nano-Graded Ti-Based Biomedical Alloys and Implants. Coatings. 2021;11:647. doi: 10.3390/coatings11060647. DOI
Simões I.G., dos Reis A.C., da Costa Valente M.L. Analysis of the influence of surface treatment by high-power laser irradiation on the surface properties of titanium dental implants: A systematic review. J. Prosthet. Dent. 2021;129:6. doi: 10.1016/j.prosdent.2021.07.026. PubMed DOI
Andrukhov O., Huber R., Shi B., Berner S., Rausch-Fan X., Moritz A., Spencer N.D., Schedle A. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent. Mater. 2016;32:1374–1384. doi: 10.1016/j.dental.2016.08.217. PubMed DOI
Günay-Bulutsuz A., Berrak Ö., Yeprem H.A., Arisan E.D., Yurci M.E. Biological responses of ultrafine grained pure titanium and their sand blasted surfaces. Mater. Sci. Eng. C. 2018;91:382–388. doi: 10.1016/j.msec.2018.05.056. PubMed DOI
Krishna Alla R., Ginjupalli K., Upadhya N., Shammas M., Krishna Ravi R., Sekhar A. Surface roughness of implants: A review. Trends Biomater. Artif. Organs. 2011;25:112–118.
Wennerberg A., Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review. Clin. Oral. Implant. Res. 2009;20:172–184. doi: 10.1111/j.1600-0501.2009.01775.x. PubMed DOI
Wang Y., Yu Z., Li K., Hu J. Effects of surface properties of titanium alloys modified by grinding, sandblasting and acidizing and nanosecond laser on cell proliferation and cytoskeleton. Appl. Surf. Sci. 2020;501:144279. doi: 10.1016/j.apsusc.2019.144279. DOI
Wedemeyer C., Jablonski H., Mumdzic-Zverotic A., Fietzek H., Mertens T., Hilken G., Krüger C., Wissmann A., Heep H., Schlepper R., et al. Laser-induced nanostructures on titanium surfaces ensure osseointegration of implants in rabbit femora. Materialia. 2019;6:100266. doi: 10.1016/j.mtla.2019.100266. DOI
Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2019;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Mukherjee S., Dhara S., Saha P. Enhanced corrosion, tribocorrosion resistance and controllable osteogenic potential of stem cells on micro-rippled Ti6Al4V surfaces produced by pulsed laser remelting. J. Manuf. Process. 2021;65:119–133. doi: 10.1016/j.jmapro.2021.03.023. DOI
Nogués C., Blanquer A., Barrios L., Ibañez E. Biomaterials in Clinical Practice: Advances in Clinical Research and Medical Devices. Springer; Cham, Switzerland: 2017. Assessment of metallic alloys biocompatibility; pp. 461–475. DOI
Solař P., Kylián O., Marek A., Vandrovcová M., Bačáková L., Hanuš J., Vyskočil J., Slavínská D., Biederman H. Particles induced surface nanoroughness of titanium surface and its influence on adhesion of osteoblast-like MG-63 cells. Appl. Surf. Sci. 2015;324:99–105. doi: 10.1016/j.apsusc.2014.10.082. DOI
Hansson K.N., Hansson S. Skewness and Kurtosis: Important Parameters in the Characterization of Dental Implant Surface Roughness—A Computer Simulation. ISRN Mater. Sci. 2011;2011:305312. doi: 10.5402/2011/305312. DOI
Šugár P., Ludrovcová B., Kalbáčová M.H., Šugárová J., Sahul M., Kováčik J. Laser Surface Modification of Powder Metallurgy-Processed Ti-Graphite Composite Which Can Enhance Cells’ Osteo-Differentiation. Materials. 2021;14:6067. doi: 10.3390/ma14206067. PubMed DOI PMC
Starý V., Douděrová M., Bačáková L. Influence of surface roughness of carbon materials on human osteoblast-like cell growth. J. Biomed. Mater. Res. A. 2014;102:1868–1879. doi: 10.1002/jbm.a.34833. PubMed DOI
Yang K., Shi J., Wang L., Chen Y., Liang C., Yang L., Wang L.N. Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review. J. Mater. Sci. Technol. 2022;99:82–100. doi: 10.1016/j.jmst.2021.05.028. DOI
Chan C.W., Carson L., Smith G.C., Morelli A., Lee S. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering. Appl. Surf. Sci. 2017;404:67–81. doi: 10.1016/j.apsusc.2017.01.233. DOI
Ionescu A.C., Brambilla E., Azzola F., Ottobelli M., Pellegrini G., Francetti L.A. Laser microtextured titanium implant surfaces reduce in vitro and in situ oral biofilm formation. PLoS ONE. 2018;13:e0202262. doi: 10.1371/journal.pone.0202262. PubMed DOI PMC
Barfeie A., Wilson J., Rees J. Implant surface characteristics and their effect on osseointegration. Br. Dent. J. 2015;218:E9. doi: 10.1038/sj.bdj.2015.171. PubMed DOI
Iqbal A., Arshad K., Abbasi M.S., Maqsood M., Shah R., Rahim M. Recent advancements in surface modifications of dental implants. J. Pak. Med. Assoc. 2021;71:1655–1661. doi: 10.47391/jpma.01-156. PubMed DOI
Bonse J., Kirner S.V., Griepentrog M., Spaltmann D., Krüger J. Femtosecond laser texturing of surfaces for tribological applications. Materials. 2018;11:801. doi: 10.3390/ma11050801. PubMed DOI PMC
Mao B., Siddaiah A., Liao Y., Menezes P.L. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. J. Manuf. Process. 2020;53:153–173. doi: 10.1016/j.jmapro.2020.02.009. DOI
Martínez J.M.V., Gómez J.S., Ponce M.B., Pedemonte F.J.B. Effects of laser processing parameters on texturized layer development and surface features of Ti6Al4V alloy samples. Coatings. 2018;8:6. doi: 10.3390/coatings8010006. DOI
Schnell G., Staehlke S., Duenow U., Barbara Nebe J., Seitz H. Femtosecond laser nano/micro textured Ti6Al4V surfaces-effect on wetting and MG-63 cell adhesion. Materials. 2019;12:2210. doi: 10.3390/ma12132210. PubMed DOI PMC
Shivakoti I., Kibria G., Cep R., Pradhan B.B., Sharma A. Laser surface texturing for biomedical applications: A review. Coatings. 2021;11:124. doi: 10.3390/coatings11020124. DOI
Böker K.O., Kleinwort F., Klein-Wiele J.H., Simon P., Jäckle K., Taheri S., Lehmann W., Schilling A.F. Laser Ablated Periodic Nanostructures on Titanium and Steel Implants Influence Adhesion and Osteogenic Differentiation of Mesenchymal Stem Cells. Materials. 2020;13:3526. doi: 10.3390/ma13163526. PubMed DOI PMC
Weng F., Chen C., Yu H. Research status of laser cladding on titanium and its alloys: A review. Mater. Des. 2014;58:412–425. doi: 10.1016/j.matdes.2014.01.077. DOI
Fedorov R., Lederle F., Li M., Olszok V., Wöbbeking K., Schade W., Hübner E.G. Formation of Titanium Nitride, Titanium Carbide, and Silicon Carbide Surfaces by High Power Femtosecond Laser Treatment. Chempluschem. 2021;86:1231–1242. doi: 10.1002/cplu.202100118. PubMed DOI
Ludrovcová B., Šugár P., Sahul M., Kováčik J., Czibor Z. Oxidation of Biocompatible Graphite–Ti Composite after Laser Ablation in Different Atmospheres. IOP Conf. Ser. Mater. Sci. Eng. 2020;987:12032. doi: 10.1088/1757-899X/987/1/012032. DOI
Zeng C., Wen H., Ettefagh A.H., Zhang B., Gao J., Haghshenas A., Raush J.R., Guo S.M. Laser nitriding of titanium surfaces for biomedical applications. Surf. Coat. Technol. 2020;385:125397. doi: 10.1016/j.surfcoat.2020.125397. DOI
Zeng C., Wen H., Zhang B., Sprunger P.T., Guo S.M. Diffusion of oxygen and nitrogen into titanium under laser irradiation in air. Appl. Surf. Sci. 2020;505:144578. doi: 10.1016/j.apsusc.2019.144578. DOI
Chikarakara E., Fitzpatrick P., Moore E., Levingstone T., Grehan L., Higginbotham C., Vázquez M., Bagga K., Naher S., Brabazon D. In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V. Biomed. Mater. 2015;10:015007. doi: 10.1088/1748-6041/10/1/015007. PubMed DOI
Faeda R.S., Tavares H.S., Sartori R., Guastaldi A.C., Marcantonio E. Evaluation of titanium implants with surface modification by laser beam: Biomechanical study in rabbit tibias. Braz. Oral. Res. 2009;23:137–143. doi: 10.1590/S1806-83242009000200008. PubMed DOI
Hanaor D.A.H., Sorrell C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2010;46:855–874. doi: 10.1007/s10853-010-5113-0. DOI
Laketić S., Rakin M., Momčilović M., Ciganović J., Veljović Đ., Cvijović-Alagić I. Surface modifications of biometallic commercially pure Ti and Ti-13Nb-13Zr alloy by picosecond Nd:YAG laser. Int. J. Miner. Metall. Mater. 2021;28:285–295. doi: 10.1007/s12613-020-2061-9. DOI
Langlade C., Vannes A.B., Krafft J.M., Martin J.R. Surface modification and tribological behaviour of titanium and titanium alloys after YAG-laser treatments. Surf. Coat. Technol. 1998;100–101:383–387. doi: 10.1016/S0257-8972(97)00653-1. DOI
Mastrangelo F., Quaresima R., Abundo R., Spagnuolo G., Marenzi G. Esthetic and physical changes of innovative titanium surface properties obtained with laser technology. Materials. 2020;13:1066. doi: 10.3390/ma13051066. PubMed DOI PMC
Rossi S., Tirri T., Paldan H., Kuntsi-Vaattovaara H., Tulamo R., Närhi T. Peri-implant tissue response to TiO2 surface modified implants. Clin. Oral. Implant. Res. 2008;19:348–355. doi: 10.1111/j.1600-0501.2007.01478.x. PubMed DOI
Wu X., Ao H., He Z., Wang Q., Peng Z. Surface Modification of Titanium by Femtosecond Laser in Reducing Bacterial Colonization. Coatings. 2022;12:414. doi: 10.3390/coatings12030414. DOI
Eghbali N., Naffakh-Moosavy H., Mohammadi S.S., Naderi-Manesh H. The influence of laser frequency and groove distance on cell adhesion, cell viability, and antibacterial characteristics of Ti-6Al-4V dental implants treated by modern fiber engraving laser. Dent. Mater. 2021;37:547–558. doi: 10.1016/j.dental.2020.12.007. PubMed DOI
Kumari R., Pfleging W., Besser H., Majumdar J.D. Microstructure and corrosion behavior of laser induced periodic patterned titanium based alloy. Opt. Laser Technol. 2019;116:196–213. doi: 10.1016/j.optlastec.2019.03.017. DOI
Satyanarayana C.P., Raju L.R., Dumpala R., Buradagunta R.S. Producing high wettable surface on pure titanium sheets by shot peening for bone implant applications. Biointerface Res. Appl. Chem. 2022;12:5745–5752. doi: 10.33263/briac125.57455752. DOI
Elias C.N., Oshida Y., Lima J.H.C., Muller C.A. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J. Mech. Behav. Biomed. Mater. 2008;1:234–242. doi: 10.1016/j.jmbbm.2007.12.002. PubMed DOI
Stich T., Alagboso F., Křenek T., Kovářík T., Alt V., Docheva D. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng. Transl. Med. 2022;7:e10239. doi: 10.1002/btm2.10239. PubMed DOI PMC
Yu Z., Zhang J., Hu J. Study on surface properties of nanosecond laser textured plasma nitrided titanium alloy. Mater. Today Commun. 2022;31:103746. doi: 10.1016/j.mtcomm.2022.103746. DOI
Balog M., Ibrahim A.M.H., Krizik P., Bajana O., Klimova A., Catic A., Schauperl Z. Bioactive Ti + Mg composites fabricated by powder metallurgy: The relation between the microstructure and mechanical properties. J. Mech. Behav. Biomed. Mater. 2019;90:45–53. doi: 10.1016/j.jmbbm.2018.10.008. PubMed DOI
Brizuela A., Herrero-Climent M., Rios-Carrasco E., Rios-Santos J.V., Pérez R.A., Manero J.M., Gil Mur J. Influence of the Elastic Modulus on the Osseointegration of Dental Implants. Materials. 2019;12:980. doi: 10.3390/ma12060980. PubMed DOI PMC
Gao X., Zhao Y., Wang M., Liu Z., Liu C. Parametric Design of Hip Implant with Gradient Porous Structure. Front. Bioeng. Biotechnol. 2022;10:850184. doi: 10.3389/fbioe.2022.850184. PubMed DOI PMC
Jiao Y., Huang L., Geng L. Progress on discontinuously reinforced titanium matrix composites. J. Alloys Compd. 2018;767:1196–1215. doi: 10.1016/j.jallcom.2018.07.100. DOI
Luo J.P., Sun J.F., Huang Y.J., Zhang J.H., Zhang Y.D., Zhao D.P., Yan M. Low-modulus biomedical Ti–30Nb–5Ta–3Zr additively manufactured by Selective Laser Melting and its biocompatibility. Mater. Sci. Eng. C. 2019;97:275–284. doi: 10.1016/j.msec.2018.11.077. PubMed DOI
Prakash C., Singh S., Ramakrishna S., Królczyk G., Le C.H. Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications. J. Alloys Compd. 2020;824:153774. doi: 10.1016/j.jallcom.2020.153774. DOI
Savio D., Bagno A. When the Total Hip Replacement Fails: A Review on the Stress-Shielding Effect. Processes. 2022;10:612. doi: 10.3390/pr10030612. DOI
Xu W., Tian J., Liu Z., Lu X., Hayat M.D., Yan Y., Li Z., Qu X., Wen C. Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications. Mater. Sci. Eng. C. 2019;105:110015. doi: 10.1016/j.msec.2019.110015. PubMed DOI
Yılmaz E., Kabataş F., Gökçe A., Fındık F. Production and Characterization of a Bone-like Porous Ti/Ti-Hydroxyapatite Functionally Graded Material. J. Mater. Eng. Perform. 2020;29:6455–6467. doi: 10.1007/s11665-020-05165-2. DOI
Yoganandam K., Mohanavel V., Vairamuthu J., Kannadhasan V. Mechanical properties of titanium matrix composites fabricated via powder metallurgy method. Mater. Today Proc. 2020;33:3243–3247. doi: 10.1016/j.matpr.2020.04.569. DOI
Geometrical product specifications (GPS)—Surface texture: Profile—Part 2: Terms, definitions and surface texture parameters. ISO; Geneva, Switzerland: 2021.
Geometrical product specifications (GPS)—Surface texture: Areal—Part 2: Terms, definitions and surface texture parameters. ISO; Geneva, Switzerland: 2021.
Zhang G., Hua X., Li F., Zhang Y., Shen C., Cheng J. Effect of laser cleaning process parameters on the surface roughness of 5754-grade aluminum alloy. Int. J. Adv. Manuf. Technol. 2019;105:2481–2490. doi: 10.1007/s00170-019-04395-6. DOI
Chen C., Zhu Y., Wang R., Han Y., Zhou H. Effect of Controlled Microtopography on Osteogenic Differentiation of Mesenchymal Stem Cells. J. Healthc. Eng. 2022;2022:7179723. doi: 10.1155/2022/7179723. PubMed DOI PMC
Veiko V., Karlagina Y., Zernitckaia E., Egorova E., Radaev M., Yaremenko A., Chernenko G., Romanov V., Shchedrina N., Ivanova E. Laser-Induced µ-Rooms for Osteocytes on Implant Surface: An In Vivo Study. Nanomaterials. 2022;12:4229. doi: 10.3390/nano12234229. PubMed DOI PMC
Veiko V., Karlagina Y., Itina T., Kuznetsova D., Elagin V., Zagaynova E., Chernenko G., Egorova E., Zernitskaia C., Manokhin S., et al. Laser-assisted fabrication and in vitro verification of functionalized surface for cells biointegration. Opt. Laser Technol. 2021;138:106871. doi: 10.1016/j.optlastec.2020.106871. DOI
Fan W., Yang Y., Lou R., Yang Y., Lou R., Chen X., Fan W., Bai J., Cao W., Cheng G., et al. Influence of energy fluence and overlapping rate of femtosecond laser on surface roughness of Ti-6Al-4V. Opt. Eng. 2019;58:106107. doi: 10.1117/1.oe.58.10.106107. DOI
Frostevarg J., Olsson R., Powell J., Palmquist A., Brånemark R. Formation mechanisms of surfaces for osseointegration on titanium using pulsed laser spattering. Appl. Surf. Sci. 2019;485:158–169. doi: 10.1016/j.apsusc.2019.04.187. DOI
Klos A., Sedao X., Itina T.E., Helfenstein-Didier C., Donnet C., Peyroche S., Vico L., Guignandon A., Dumas V. Ultrafast Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy. Nanomaterials. 2020;10:864. doi: 10.3390/nano10050864. PubMed DOI PMC
Tiainen L., Abreu P., Buciumeanu M., Silva F., Gasik M., Guerrero R.S., Carvalho O. Novel laser surface texturing for improved primary stability of titanium implants. J. Mech. Behav. Biomed. Mater. 2019;98:26–39. doi: 10.1016/j.jmbbm.2019.04.052. PubMed DOI
Att W., Hori N., Takeuchi M., Ouyang J., Yang Y., Anpo M., Ogawa T. Time-dependent degradation of titanium osteoconductivity: An implication of biological aging of implant materials. Biomaterials. 2009;30:5352–5363. doi: 10.1016/j.biomaterials.2009.06.040. PubMed DOI
Hori N., Att W., Ueno T., Sato N., Yamada M., Saruwatari L., Suzuki T., Ogawa T. Age-dependent degradation of the protein adsorption capacity of titanium. J. Dent. Res. 2009;88:663–667. doi: 10.1177/0022034509339567. PubMed DOI
Kido D., Komatsu K., Suzumura T., Matsuura T., Cheng J., Kim J., Park W., Ogawa T. Influence of Surface Contaminants and Hydrocarbon Pellicle on the Results ofWettability Measurements of Titanium. Int. J. Mol. Sci. 2023;24:14688. doi: 10.3390/ijms241914688. PubMed DOI PMC
Dongre G., Rajurkar A., Raut R., Jangam S. Preparation of super-hydrophobic textures by using nanosecond pulsed laser. Mater. Today Proc. 2021;42:1145–1151. doi: 10.1016/j.matpr.2020.12.497. DOI
Yang Z., Liu X.P., Tian Y.L. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. J. Colloid Interface Sci. 2019;533:268–277. doi: 10.1016/j.jcis.2018.08.082. PubMed DOI
Edachery V., Kailas S.R., Kailas S.V. Influence of surface texture directionality and roughness on wettability, sliding angle, contact angle hysteresis, and lubricant entrapment capability. Tribol. Int. 2021;158:106932. doi: 10.1016/j.triboint.2021.106932. DOI
Dou H., Liu H., Xu S., Chen Y., Miao X., Lü H., Jiang X. Influence of laser fluences and scan speeds on the morphologies and wetting properties of titanium alloy. Optik. 2020;224:165443. doi: 10.1016/j.ijleo.2020.165443. DOI
Liu Z., Niu T., Lei Y., Luo Y. Metal surface wettability modification by nanosecond laser surface texturing: A review. Biosurf. Biotribol. 2022;8:95–120. doi: 10.1049/bsb2.12039. DOI
Rafiee K., Naffakh-Moosavy H., Tamjid E. The effect of laser frequency on roughness, microstructure, cell viability and attachment of Ti6Al4V alloy. Mater. Sci. Eng. C. 2020;109:110637. doi: 10.1016/j.msec.2020.110637. PubMed DOI
Nanduru V.S.P.S., Ramakrishna N.S., Babu R.S., Babu P.D., Marimuthu P., Miryala S., Srinandan C.S. Laser surface texturing inhibits Biofilm formation. Mater. Chem. Phys. 2021;271:124909. doi: 10.1016/j.matchemphys.2021.124909. DOI
Fadeeva E., Truong V.K., Stiesch M., Chichkov B.N., Crawford R.J., Wang J., Ivanova E.P. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir. 2011;27:3012–3019. doi: 10.1021/la104607g. PubMed DOI