Case report: Filarial infection of a parti-coloured bat: Litomosa sp. adult worms in abdominal cavity and microfilariae in bat semen
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu kazuistiky, časopisecké články
PubMed
37808105
PubMed Central
PMC10551455
DOI
10.3389/fvets.2023.1284025
Knihovny.cz E-zdroje
- Klíčová slova
- Chiroptera, Vespertilio murinus, Wolbachia, electroejaculation, filariasis, semen quality parameters, semen-borne pathogens,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
BACKGROUND: Filarial infections have been understudied in bats. Likewise, little is known about pathogens associated with the reproductive system in chiropterans. While semen quality is critical for reproductive success, semen-borne pathogens may contribute to reproductive failure. METHODS: For the first time we performed electroejaculation and used computer-assisted semen analysis to provide baseline data on semen quality in a parti-coloured bat (Vespertilio murinus). RESULTS: The semen quality values measured in the V. murinus male appeared high (semen concentration = 305.4 × 106/mL; progressive and motile sperm = 46.58 and 60.27%, respectively). As an incidental finding, however, microfilariae were observed in the bat semen examined. At necropsy, eight adult filarial worms, later genetically identified as Litomosa sp., were found in the peritoneal cavity, close to the stomach, of the same particoloured bat male dying as a result of dysmicrobia and haemorrhagic gastroenteritis in a wildlife rescue centre. Histopathology revealed microfilariae in the testicular connective tissue and the epidydimal connective and fat tissues. A PCR assay targeting cytochrome c oxidase subunit 1 confirmed that adult worms from the peritoneal cavity and testicular microfilariae were of the same filarial species. Mildly engorged argasid mite larvae attached to the bat skin proved negative for filarial DNA and the adult filarial worms proved negative for endosymbiont Wolbachia. CONCLUSION: While the standard filarial life cycle pattern involves a vertebrate definitive host and an invertebrate vector, represented by a blood-sucking ectoparasite, our finding suggests that microfilariae of this nematode species may also be semen-borne, with transmission intensity promoted by the polygynous mating system of vespertilionid bats in which an infected male mates with many females during the autumn swarming. Presence of microfilariae may be expected to decrease semen quality and transmission via this route may challenge the success of reproductive events in females after mating. Further investigation will be necessary to better understand the bat-parasite interaction and the life cycle of this filarial worm.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czechia
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czechia
Department of Pathology and Parasitology University of Veterinary Sciences Brno Brno Czechia
Department of Plant Origin Food Sciences University of Veterinary Sciences Brno Brno Czechia
Institute of Scientific Instruments of the Czech Academy of Sciences v v i Brno Czechia
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Gardner SL, Jiménez-Ruiz FA. Methods for the study of bats endoparasites In: Kunz TH, Parsons S, editors. Ecological and Behavioral Methods for the Study of Bats. Baltimore, Maryland: The Johns Hopkins University Press; (2009). 795–805.
Gardner SL, Whitaker JO. Endoparasites In: Barnard SM, editor. Bats in Captivity - Volume 1: Biological and Medical Aspects. Washington DC: Logos Press; (2009). 445–58.
Hosek J, Horácek I. Nematodes parasitizing the palaearctic bats: host-parasite relations In: Hanák V, Horáček I, Gaisler J, editors. European Bat Research. Praha: Charles University Press; (1987). 465–73.
Guerrero R, Martin C, Gardner SL, Bain O. New and known species of DOI
Junker K, Barbuto M, Casiragh M, Martin C, Uni S, Boomker J, et al. PubMed DOI
Léger C. Bat parasites (Acari, Anoplura, Cestoda, Diptera, Hemiptera, Nematoda, Siphonaptera, Trematoda) in France (1762-2018): a literature review and contribution to a checklist. Parasite. (2020) 27:61. doi: 10.1051/parasite/2020051, PMID: PubMed DOI PMC
Martin C, Bain O, Jouvenet N, Raharimanga V, Robert V, Rousset D. First report of PubMed DOI
Notarnicola J, Ruíz FAJ, Gardner SL. PubMed DOI
Ohbayashi M, Kamiya H. Nematode parasites from PubMed
Petit G. On filariae of the genus DOI
Ramasindrazana B, Dellagi K, Lagadec E, Randrianarivelojosia M, Goodman SM, Tortosa P. Diversity, host specialization, and geographic structure of filarial nematodes infecting Malagasy bats. PLoS One. (2016) 11:e0145709. doi: 10.1371/journal.pone.0145709, PMID: PubMed DOI PMC
Rendón-Franco E, López-Díaz O, Martínez-Hernández F, Villalobos G, Muñoz-García CI, Aréchiga-Ceballos N, et al. PubMed DOI PMC
Vogeler AV, Tschapka M, Kalko EKV, Cottontail VM. PubMed DOI
de Souto E, Oliveira A, Campos É, Vilela V, De Barros C, Dantas A, et al. PubMed DOI
Taylor MJ, Bandi C, Hoerauf A. PubMed DOI
Morales-Hojas R. Molecular systematics of filarial parasites, with an emphasis on groups of medical and veterinary importance, and its relevance for epidemiology. Infect Genet Evol. (2009) 9:748–59. doi: 10.1016/j.meegid.2009.06.007, PMID: PubMed DOI
Taylor MJ, Voronin D, Johnston KL, Ford L. PubMed DOI
Genchi C, Kramer H, Sassera D, Bandi C. PubMed DOI
Manoj RRS, Latrofa MS, Epis S, Otranto D. PubMed DOI PMC
Lagrange E, Bettini S. Descrizione di una nuova filaria,
Wilson DE, Mittermeier RA. Handbook of the Mammals of the World, vol. 9. Barcelona: Bats. Lynx Edicions; (2019). 1008 p.
Hajkova P, Pikula J. Veterinary treatment of evening bats (Vespertilionidae) in the Czech Republic. Vet Rec. (2007) 161:139–40. doi: 10.1136/vr.161.4.139, PMID: PubMed DOI
Fasel NJ, Helfenstein F, Buff S, Richner H. Electroejaculation and semen buffer evaluation in the microbat PubMed DOI
Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining In: Day CE, editor. Histopathology: Methods and Protocols. New York: Humana Press, Springer; (2014). 31–43. PubMed
Mann BC, Bezuidenhout JJ, Swanevelder ZH, Grobler AF. MinION 16S datasets of a commercially available microbial community enables the evaluation of DNA extractions and data analyses. Data Brief. (2021) 36:107036. doi: 10.1016/j.dib.2021.107036 PubMed DOI PMC
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. (2013) 42:D633–42. doi: 10.1093/nar/gkt1244 (2013) PubMed DOI PMC
Casiraghi M, Anderson T, Bandi C, Bazzocchi C, Genchi C. A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of PubMed DOI
Ren WB, Wei HY, Yang Y, Shao SX, Wu HX, Chen XM, et al. Molecular detection and phylogenetic analyses of PubMed DOI PMC
Fasel NJ, Wesseling C, Fernandez AA, Vallat A, Glauser G, Helfenstein F, et al. Alternative reproductive tactics, sperm mobility and oxidative stress in DOI
Hermes R, Hildebrandt TB, Göritz F, Fasel NJ, Holtze S. First cryopreservation of phyllostomid bat sperm. Theriogenology. (2019) 131:28–31. doi: 10.1016/j.theriogenology.2019.03.014, PMID: PubMed DOI
Racey PA. The prolonged storage and survival of spermatozoa in Chiroptera. Reproduction. (1979) 56:391–402. doi: 10.1530/jrf.0.0560391, PMID: PubMed DOI
De Jong CE, Jonsson N, Field H, Smith C, Crichton EG, Phillips N, et al. Collection, seminal characteristics and chilled storage of spermatozoa from three species of free-range flying fox ( PubMed DOI
Poiani A. Complexity of seminal fluid: a review. Behav Ecol Sociobiol. (2006) 60:289–310. doi: 10.1007/s00265-006-0178-0 DOI
Talwar P, Hayatnagarkar S. Sperm function test. J Hum Reprod Sci. (2015) 8:61–9. doi: 10.4103/0974-1208.158588, PMID: PubMed DOI PMC
Hayes DJ, Carter NS. An investigation of fructose utilization in PubMed DOI
Crichton EG, Krutzsch PH, Wimsatt WA. Studies on prolonged spermatozoa survival in chiroptera—I. the role of uterine free fructose in the spermatozoa storage phenomenon. Comp Biochem Physiol A Physiol. (1981) 70:387–95. doi: 10.1016/0300-9629(81)90195-X DOI
Neuweiler G. The Biology of Bats. Oxford: Oxford University Press; (2000). 310 p.
Pikula J, Bandouchova H, Kovacova V, Linhart P, Piacek V, Zukal J. Reproduction of rescued Vespertilionid bats ( PubMed DOI
Zhao S, Zhu W, Xue S, Han D. Testicular defense systems: immune privilege and innate immunity. Cell Mol Immunol. (2014) 11:428–37. doi: 10.1038/cmi.2014.38, PMID: PubMed DOI PMC
Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. (2012) 335:936–41. doi: 10.1126/science.1214935, PMID: PubMed DOI PMC
Krutzsch PH. Anatomy, physiology and cyclicity of the male reproductive tract In: Crichton EG, Krutzsch PH, editors. Reproductive Biology of Bats. New York: Academic Press; (2000). 91–155.
Bain O, Wanji S, Vuong PN, Maréchal P, Le Goff L, Petit G, et al. Larval biology of six filariae of the sub-family Onchocercinae in a vertebrate host. Parasite. (1994) 1:241–54. doi: 10.1051/parasite/1994013241, PMID: PubMed DOI
Guiton R, Drevet JR. Viruses, bacteria and parasites: infection of the male genital tract and fertility. Basic Clin Androl. (2023) 33:19. doi: 10.1186/s12610-023-00193-z, PMID: PubMed DOI PMC
Prasoon D, Agrawal P. PubMed DOI PMC
Brezina PR, Yunus F, Garcia J, Zhao Y. Description of the parasite PubMed DOI PMC
Li J, Li L, Jiang H, Yuan L, Zhang L, Ma JE, et al. Fecal Bacteriome and Mycobiome in bats with diverse diets in South China. Current Microbiol. (2018) 75:1352–61. doi: 10.1007/s00284-018-1530-0, PMID: PubMed DOI
Foti M, Spena MT, Fisichella V, Mascetti A, Colnaghi M, Grasso M, et al. Cultivable Bacteria associated with the microbiota of Troglophile bats. Animals. (2022) 12:2684. doi: 10.3390/ani12192684, PMID: PubMed DOI PMC
Singh P, Mosci R, Rudrik JT, Manning SD. Draft genome sequence of a Diarrheagenic PubMed DOI PMC
Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol. (2018) 44:34–40. doi: 10.1016/j.mib.2018.07.003, PMID: PubMed DOI PMC
Madden AA, Oliverio AM, Kearns PJ, Henley JB, Fierer N, Starks PTB, et al. Chronic stress and captivity alter the cloacal microbiome of a wild songbird. J Experimental Biol. (2022) 225:jeb243176. doi: 10.1242/jeb.243176 PubMed DOI
Olsson A. Gastrointestinal disorders In: Barnard SM, editor. Bats in Captivity. Volume 1: Biological and Medical Aspects. Washington, DC: Logos Press; (2009). 165–74.
Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond. (2003) 270 Suppl 1:S96–9. doi: 10.1098/rsbl.2003.0025, PMID: PubMed DOI PMC
Guerrero R, Bain O, Attout T, Martin C. The infective larva of PubMed DOI
Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, Gardner SL, et al. Mapping the presence of PubMed DOI
Fenn K, Blaxter M. Are filarial nematode PubMed DOI
McNulty SN, Foster JM, Mitreva M, Dunning Hotopp JC, Martin J, Fischer K, et al. Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer. PLoS One. (2010) 5:e11029. doi: 10.1371/journal.pone.0011029, PMID: PubMed DOI PMC
Cross JH. Chapter 92: Filarial nematodes In: Baron S, editor. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; (1996) PubMed
Bain O, Babayan S, Gomes J, Rojas G, Guerrero R. First account on the larval biology of a PubMed
van Schaik J, Dekeukeleire D, Kerth G. Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species. Mol Ecol. (2015) 24:2324–35. doi: 10.1111/mec.13171, PMID: PubMed DOI
Mantovani A, Jackson RF. Transplacental transmission of microfilariae of DOI
Eberhard ML, Hitch WL, Mcneeley DF, Lammie PJ. Transplacental transmission of PubMed DOI
Diversity of filariae circulating in South Caucasian bats and their ectoparasites