Revisiting the nonregulatory, constitutive nonphotochemical quenching of the absorbed light energy in oxygenic photosynthetic organisms
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39651418
PubMed Central
PMC11613829
DOI
10.32615/ps.2024.022
PII: PS62204
Knihovny.cz E-zdroje
- Klíčová slova
- Fv/Fm, chlorophyll a fluorescence, constitutive nonregulatory dissipation, nonphotochemical quenching, quantum yield, structural dynamics,
- Publikační typ
- časopisecké články MeSH
The present paper aims to open discussion on the information content, physical mechanism(s), and measuring protocols to determine the partitioning of the absorbed light energy in oxygenic photosynthetic organisms. Revisiting these questions is incited by recent findings discovering that PSII, in addition to its open and closed state, assumes a light-adapted charge-separated state and that chlorophyll a fluorescence induction (ChlF), besides the photochemical activity of PSII, reflects the structural dynamics of its reaction center complex. Thus, the photochemical quantum yield of PSII cannot be determined from the conventional ChlF-based protocol. Consequently, the codependent quantity - the quantum yield of the so-called nonregulatory constitutive nonphotochemical quenching (npq) - loses its physical meaning. Processes beyond photochemistry and regulatory npq should be identified and characterized by multifaceted studies, including ChlF. Such investigations may shed light on the putative roles of dissipation and other energy-consuming events in the stress physiology of photosynthetic machinery.
Institute of Plant Biology HUN REN Biological Research Centre Temesvári körút 62 6726 Szeged Hungary
Zobrazit více v PubMed
Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. – Annu. Rev. Plant Biol. 59: 89-113, 2008. 10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Blankenship R.E.: Molecular Mechanisms of Photosynthesis. 3rd Edition. Pp. 352. Wiley, Chichester: 2021.
Butler W.L.: Energy distribution in photochemical apparatus of photosynthesis. – Annu. Rev. Plant Physiol. 29: 345-378, 1978. 10.1146/annurev.pp.29.060178.002021 DOI
Butler W.L., Strasser R.J.: Tripartite model for the photochemical apparatus of green plant photosynthesis. – PNAS 74: 3382-3385, 1977. 10.1073/pnas.74.8.3382 PubMed DOI PMC
Duysens L.N.M., Sweers H.E.: Mechanism of two photochemical reactions in algae as studied by means of fluorescence. – In: Japanese Society of Plant Physiologists (ed.): Microalgae and Photosynthetic Bacteria. Pp. 353-372. University of Tokyo Press, Tokyo: 1963.
Garab G., Magyar M., Sipka G., Lambrev P.H.: New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light-adapted state of photosystem II. – J. Exp. Bot. 74: 5458-5471, 2023. 10.1093/jxb/erad252 PubMed DOI
Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. – BBA-Gen. Subjects 990: 87-92, 1989. 10.1016/S0304-4165(89)80016-9 DOI
Genty B., Harbinson J., Cailly A.L., Rizza F.: Fate of excitation at PS II in leaves: the nonphotochemical side. – In: The Third BBSRC Robert Hill Symposium on Photosynthesis. Abstract no. P28. University of Sheffield, Department of Molecular Biology and Biotechnology, Western Bank, Sheffield: 1996.
Gorbunov M.Y., Falkowski P.G.: Using chlorophyll fluorescence to determine the fate of photons absorbed by phytoplankton in the world's oceans. – Annu. Rev. Mar. Sci. 14: 213-238, 2022. 10.1146/annurev-marine-032621-122346 PubMed DOI
Govindjee G., Papageorgiou G.C.: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 818. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9 DOI
Horton P.: Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. – Philos. T. Roy. Soc. B 367: 3455-3465, 2012. 10.1098/rstb.2012.0069 PubMed DOI PMC
Joliot P., Joliot A.: Comparative study of the fluorescence yield and of the C550 absorption change at room temperature. – BBA-Bioenergetics 546: 93-105, 1979. 10.1016/0005-2728(79)90173-7 PubMed DOI
Kalaji H.M., Goltsev V.: Special issue in honour of Prof. Reto J. Strasser – Foreword. – Photosynthetica 58: 1-5, 2020. 10.32615/ps.2020.046 DOI
Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. – Photosynth. Res. 122: 121-158, 2014. 10.1007/s11120-014-0024-6 PubMed DOI PMC
Keller B., Soto J., Steier A. et al.: Linking photosynthesis and yield reveals a strategy to improve light use efficiency in a climbing bean breeding population. – J. Exp. Bot. 75: 901-916, 2024. 10.1093/jxb/erad416 PubMed DOI PMC
Kitajima M., Butler W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. – BBA-Bioenergetics 376: 105-115, 1975. 10.1016/0005-2728(75)90209-1 PubMed DOI
Kono M., Miyata K., Matsuzawa S. et al.: Mixed population hypothesis of the active and inactive PSII complexes opens a new door for photoinhibition and fluorescence studies: an ecophysiological perspective. – Funct. Plant Biol. 49: 917-925, 2022. 10.1071/FP21355 PubMed DOI
Kramer D.M., Avenson T.J., Edwards G.E.: Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. – Trends Plant Sci. 9: 349-357, 2004. 10.1016/j.tplants.2004.05.001 PubMed DOI
Kuhlgert S., Austic G., Zegarac R. et al.: MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. – Royal Soc. Open Sci. 3: 160592, 2016. 10.1098/rsos.160592 PubMed DOI PMC
Laisk A., Oja V.: Variable fluorescence of closed photochemical reaction centers. – Photosynth. Res. 143: 335-346, 2020. 10.1007/s11120-020-00712-3 PubMed DOI
Laisk A., Peterson R.B., Oja V.: Excitation transfer and quenching in photosystem II, enlightened by carotenoid triplet state in leaves. – Photosynth. Res. 160: 31-44, 2024. 10.1007/s11120-024-01086-6 PubMed DOI
Lazár D.: Parameters of photosynthetic energy partitioning. – J. Plant Physiol. 175: 131-147, 2015. 10.1016/j.jplph.2014.10.021 PubMed DOI
Lazár D., Niu Y.X., Nedbal L.: Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light. – J. Exp. Bot. 73: 6380-6393, 2022. 10.1093/jxb/erac283 PubMed DOI PMC
Magyar M., Akhtar P., Sipka G. et al.: Dependence of the rate-limiting steps in the dark-to-light transition of photosystem II on the lipidic environment of the reaction center. – Photosynthetica 60: 147-156, 2022. 10.32615/ps.2022.016 DOI
Magyar M., Sipka G., Han W.H. et al.: Characterization of the rate-limiting steps in the dark-to-light transitions of closed Photosystem II: Temperature dependence and invariance of waiting times during multiple light reactions. – Int. J. Mol. Sci. 24: 94, 2023. 10.3390/ijms24010094 PubMed DOI PMC
Magyar M., Sipka G., Kovács L. et al.: Rate-limiting steps in the dark-to-light transition of Photosystem II – revealed by chlorophyll-a fluorescence induction. – Sci. Rep.-UK 8: 2755, 2018. 10.1038/s41598-018-21195-2 PubMed DOI PMC
Mattila H., Havurinne V., Antal T., Tyystjärvi E.: Evaluation of visible-light wavelengths that reduce or oxidize the plastoquinone pool in green algae with the activated F0 rise method. – Photosynthetica 60: 529-538, 2022. 10.32615/ps.2022.049 DOI
Mattila H., Mishra S., Tyystjärvi T., Tyystjärvi E.: Singlet oxygen production by photosystem II is caused by misses of the oxygen evolving complex. – New Phytol. 237: 113-125, 2023. 10.1111/nph.18514 PubMed DOI PMC
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI
Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. – J. Exp. Bot. 64: 3983-3998, 2013. 10.1093/jxb/ert208 PubMed DOI
Oja V., Laisk A.: Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. – Photosynth. Res. 145: 209-225, 2020. 10.1007/s11120-020-00783-2 PubMed DOI
Prášil O., Kolber Z.S., Falkowski P.G.: Control of the maximal chlorophyll fluorescence yield by the QB binding site. – Photosynthetica 56: 150-162, 2018. 10.1007/s11099-018-0768-x DOI
Roháček K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. – Photosynthetica 40: 13-29, 2002. 10.1023/A:1020125719386 DOI
Ruban A.V., Wilson S.: The mechanism of non-photochemical quenching in plants: localization and driving forces. – Plant Cell Physiol. 62: 1063-1072, 2021. 10.1093/pcp/pcaa155 PubMed DOI
Santabarbara S., Monteleone F.V., Remelli W. et al.: Comparative excitation-emission dependence of the ratio in model green algae and cyanobacterial strains. – Physiol. Plantarum 166: 351-364, 2019. 10.1111/ppl.12931 PubMed DOI
Schreiber U., Klughammer C., Kolbowski J.: Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. – Photosynth. Res. 113: 127-144, 2012. 10.1007/s11120-012-9758-1 PubMed DOI PMC
Shevela D., Kern J.F., Govindjee G., Messinger J.: Solar energy conversion by photosystem II: principles and structures. – Photosynth. Res. 156: 279-307, 2023. 10.1007/s11120-022-00991-y PubMed DOI PMC
Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. – Plant Cell 33: 1286-1302, 2021. 10.1093/plcell/koab008 PubMed DOI PMC
Sipka G., Müller P., Brettel K. et al.: Redox transients of P680 associated with the incremental chlorophyll a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. – Physiol. Plantarum 166: 22-32, 2019. 10.1111/ppl.12945 PubMed DOI
Sipka G., Nagy L., Magyar M. et al.: Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. – Open Biol. 12: 220297, 2022. 10.1098/rsob.220297 PubMed DOI PMC
Stirbet A.: Excitonic connectivity between photosystem II units: what is it, and how to measure it? – Photosynth. Res. 116: 189-214, 2013. 10.1007/s11120-013-9863-9 PubMed DOI
Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise. – Photosynth. Res. 113: 15-61, 2012. 10.1007/s11120-012-9754-5 PubMed DOI
Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. – Photochem. Photobiol. 61: 32-42, 1995. 10.1111/j.1751-1097.1995.tb09240.x DOI
Trtílek M., Kramer D.M., Koblížek M., Nedbal L.: Dual-modulation LED kinetic fluorometer. – J. Lumin. 72-74: 597-599, 1997. 10.1016/S0022-2313(97)00066-5 DOI
Vass I., Cser K.: Janus-faced charge recombinations in photosystem II photoinhibition. – Trends Plant Sci. 14: 200-205, 2009. 10.1016/j.tplants.2009.01.009 PubMed DOI
Vredenberg W.J.: Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. – Photosynth. Res. 96: 83-97, 2008. 10.1007/s11120-007-9287-5 PubMed DOI
Wientjes E., van Amerongen H., Croce R.: Quantum yield of charge separation in Photosystem II: functional effect of changes in the antenna size upon light acclimation. – J. Phys. Chem. B 117: 11200-11208, 2013. 10.1021/jp401663w PubMed DOI