Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms

. 2022 Dec ; 12 (12) : 220297. [epub] 20221214

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36514981

The purpose of this review is to outline our understanding of the nature, mechanism and physiological significance of light-induced reversible reorganizations in closed Type II reaction centre (RC) complexes. In the so-called 'closed' state, purple bacterial RC (bRC) and photosystem II (PSII) RC complexes are incapable of generating additional stable charge separation. Yet, upon continued excitation they display well-discernible changes in their photophysical and photochemical parameters. Substantial stabilization of their charge-separated states has been thoroughly documented-uncovering light-induced reorganizations in closed RCs and revealing their physiological importance in gradually optimizing the operation of the photosynthetic machinery during the dark-to-light transition. A range of subtle light-induced conformational changes has indeed been detected experimentally in different laboratories using different bRC and PSII-containing preparations. In general, the presently available data strongly suggest similar structural dynamics of closed bRC and PSII RC complexes, and similar physical mechanisms, in which dielectric relaxation processes and structural memory effects of proteins are proposed to play important roles.

Zobrazit více v PubMed

Barber J. 2004. Engine of life and big bang of evolution: a personal perspective. Photosynth. Res. 80, 137-155. (10.1023/B:PRES.0000030662.04618.27) PubMed DOI

Blankenship RE. 2014. Molecular mechanisms of photosynthesis, 2nd edn. Oxford, UK: Wiley-Blackwell.

Govindjee, Beatty JT, Gest H, Allen JP. 2005. Discoveries in photosynthesis. Dordrecht, The Netherlands: Springer.

Eaton-Rye JJ, Tripathy BC, Sharkey TD. 2012. Photosynthesis: plastid biology, energy conversion and carbon assimilation. Dordrecht, The Netherlands: Springer.

Bahatyrova S, et al. 2004a. The native architecture of a photosynthetic membrane. Nature 430, 1058-1062. (10.1038/nature02823) PubMed DOI

Shen JR. 2015. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66, 23-48. (10.1146/annurev-arplant-050312-120129) PubMed DOI

Heathcote P, Jones MR. 2012. 8.7 The structure-function relationships of photosynthetic reaction centers. In Comprehensive biophysics (eds Egelman EH), pp. 115-144. Amsterdam, The Netherlands: Elsevier.

Cardona T, Sedoud A, Cox N, Rutherford AW. 2012. Charge separation in photosystem II: a comparative and evolutionary overview. BBA 1817, 26-43. (10.1016/j.bbabio.2011.07.012) PubMed DOI

Das G, Chattoraj S, Nandi S, Mondal P, Sahall A, Bhattacharyya K, Ghosh S. 2018. Probing the conformational dynamics of photosystem I in unconfined and confined spaces. Phys. Chem. Chem. Phys. 20, 449-455. (10.1039/C7CP07375E) PubMed DOI

Goushcha AO, Holzwarth AR, Kharkyanen VN. 1999. Self-regulation phenomenon of electron-conformational transitions in biological electron transfer under nonequilibrium conditions. Phys. Rev. E 59, 3444-3452. (10.1103/PhysRevE.59.3444) DOI

Christophorov LN, Holzwarth AR, Kharkyanen VN, van Mourik F. 2000. Structure-function self-organization in nonequilibrium macromolecular systems. Chem. Phys. 256, 45-60. (10.1016/S0301-0104(00)00089-6) DOI

Barabash YM, Berezetskaya NM, Christophorov LN, Goushcha AO, Kharkyanen VN. 2002. Effects of structural memory in protein reactions. J. Chem. Phys. 116, 4339-4352. (10.1063/1.1447906) DOI

Blankenship RE. 2021. Molecular mechanisms of photosynthesis, 3rd edn. Chichester, UK: Wiley-Blackwell.

van Brederode ME, Jones MR. 2000. Reaction centres of purple bacteria. In Enzyme-catalysed electron and radical transfer (eds Scrutton N.S., Holzenburg A.), vol. 35, pp. 621-676. New York, NY: Kluwer. PubMed

Michel H. 1982. Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol. 158, 567-572. (10.1016/0022-2836(82)90216-9) PubMed DOI

Deisenhofer J, Michel H. 1991. High-resolution structures of photosynthetic reaction centers. Annu. Rev. Biophys. Bio. 20, 247-266. (10.1146/annurev.bb.20.060191.001335) PubMed DOI

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. 2021. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70-82. (10.1002/pro.3943) PubMed DOI PMC

Umena Y, Kawakami K, Shen JR, Kamiya N. 2011. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 angstrom. Nature 473, 55-U65. (10.1038/nature09913) PubMed DOI

Zabret J, et al. 2021. Structural insights into photosystem II assembly. Nat. Plants 7, 524-+. (10.1038/s41477-021-00895-0) PubMed DOI PMC

Barber J, Morris E, Buchel C. 2000. Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47. BBA 1459, 239-247. PubMed

Croce R, van Amerongen H. 2011. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B 104, 142-153. (10.1016/j.jphotobiol.2011.02.015) PubMed DOI

Nelson N, Junge W. 2015. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84, 659-683. (10.1146/annurev-biochem-092914-041942) PubMed DOI

Yu LJ, Suga M, Wang-Otomo ZY, Shen JR. 2018. Structure of photosynthetic LH1-RC supercomplex at 1.9 angstrom resolution. Nature 556, 209-213. (10.1038/s41586-018-0002-9) PubMed DOI

Romero E, Novoderezhkin VI, van Grondelle R. 2017. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543, 355-365. (10.1038/nature22012) PubMed DOI

Kakitani Y, Hou A, Miyasako Y, Koyama Y, Nagae H. 2010. Rates of the initial two steps of electron transfer in reaction centers from Rhodobacter sphaeroides as determined by singular-value decomposition followed by global fitting. Chem. Phys. Lett. 492, 142-149. (10.1016/j.cplett.2010.03.071) DOI

Zhu JY, van Stokkum IHM, Paparelli L, Jones MR, Groot ML. 2013. Early bacteriopheophytin reduction in charge separation in reaction centers of Rhodobacter sphaeroides. Biophys. J. 104, 2493-2502. (10.1016/j.bpj.2013.04.026) PubMed DOI PMC

Dominguez PN, Himmelstoss M, Michelmann J, Lehner FT, Gardiner AT, Cogdell RJ, Zinth W. 2014. Primary reactions in photosynthetic reaction centers of Rhodobacter sphaeroides - Time constants of the initial electron transfer. Chem. Phys. Lett. 601, 103-109. (10.1016/j.cplett.2014.03.085) DOI

Miloslavina Y, Szczepaniak M, Muller MG, Sander J, Nowaczyk M, Rogner M, Holzwarth AR. 2006. Charge separation kinetics in intact photosystem II core particles is trap-limited. A picosecond fluorescence study. Biochem 45, 2436-2442. (10.1021/bi052248c) PubMed DOI

Tumino G, Casazza AP, Engelmann E, Garlaschi FM, Zucchelli G, Jennings RC. 2008. Fluorescence lifetime spectrum of the plant photosystem II core complex: photochemistry does not induce specific reaction center quenching. Biochem 47, 10 449-10 457. (10.1021/bi800831j) PubMed DOI

van der Weij-de Wit CD, Dekker JP, van Grondelle R, van Stokkum IHM. 2011. Charge separation is virtually irreversible in Photosystem II core complexes with oxidized primary quinone acceptor. J. Phys. Chem. A 115, 3947-3956. (10.1021/jp1083746) PubMed DOI

Holzwarth AR, Muller MG, Reus M, Nowaczyk M, Sander J, Rogner M. 2006. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc. Natl Acad. Sci. USA 103, 6895-6900. (10.1073/pnas.0505371103) PubMed DOI PMC

Pawlowicz NP, Groot ML, van Stokkum IH, Breton J, van Grondelle R. 2007. Charge separation and energy transfer in the photosystem II core complex studied by femtosecond midinfrared spectroscopy. Biophys. J. 93, 2732-2742. (10.1529/biophysj.107.105452) PubMed DOI PMC

Kaucikas M, Maghlaoui K, Barber J, Renger T, van Thor JJ. 2016. Ultrafast infrared observation of exciton equilibration from oriented single crystals of photosystem II. Nat. Commun. 7, 13977. (10.1038/ncomms13977) PubMed DOI PMC

Szczepaniak M, Sander J, Nowaczyk M, Müller MG, Rögner M, Holzwarth AR. 2009. Charge separation, stabilization, and protein relaxation in photosystem II core particles with closed reaction center. Biophys. J. 96, 621-631. (10.1016/j.bpj.2008.09.036) PubMed DOI PMC

Pan J, Saer R, Lin S, Beatty JT, Woodbury NW. 2016. Electron transfer in bacterial reaction centers with the photoactive bacteriopheophytin replaced by a bacteriochlorophyll through coordinating ligand substitution. Biochem 55, 4909-4918. (10.1021/acs.biochem.6b00317) PubMed DOI

Suga M, et al. 2017. Light-induced structural changes and the site of O = O bond formation in PSII caught by XFEL. Nature 543, 131-135. (10.1038/nature21400) PubMed DOI

Kern J, et al. 2018. Structures of the intermediates of Kok's photosynthetic water oxidation clock. Nature 563, 421-425. (10.1038/s41586-018-0681-2) PubMed DOI PMC

Suga M, et al. 2019. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an X-ray free-electron laser. Science 366, 334-338. (10.1126/science.aax6998) PubMed DOI

Stowell MH, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G. 1997. Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276, 812-816. (10.1126/science.276.5313.812) PubMed DOI

Sugo Y, Saito K, Ishikita H. 2021. Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers. Proc. Natl Acad. Sci. USA 118, e2103203118. (10.1073/pnas.2103203118) PubMed DOI PMC

Wei RJ, Zhang Y, Mao J, Kaur D, Khaniya U, Gunner MR. 2022. Comparison of proton transfer paths to the QA and QB sites of the Rb. sphaeroides photosynthetic reaction centers. Photosynth. Res. 152, 153-165. (10.1007/s11120-022-00906-x) PubMed DOI

Hou JM. 2011. Enthalpy, entropy, and volume changes of electron transfer reactions in photosynthetic proteins. In Application of thermodynamics to biological and materials science (ed. Tadashi M), pp. 93-110. Rijeka, Croatia: InTech.

Xu Q, Gunner MR. 2000. Temperature dependence of the free energy, enthalpy, and entropy of P+QA- charge recombination in Rhodobacter sphaeroides R-26 reaction centers. J. Phys. Chem. B 104, 8035-8043. (10.1021/jp000543v) DOI

Cseh Z, Rajagopal S, Tsonev T, Busheva M, Papp E, Garab G. 2000. Thermooptic effect in chloroplast thylakoid membranes. Thermal and light stability of pigment arrays with different levels of structural complexity. Biochem 39, 15 250-15 257. (10.1021/bi001600d) PubMed DOI

Arnlund D, et al. 2014. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nat. Methods 11, 923-926. (10.1038/nmeth.3067) PubMed DOI PMC

Moser CC, Page CC, Farid R, Dutton PL. 1995. Biological electron-transfer. J. Bioenerg. Biomembr. 27, 263-274. (10.1007/BF02110096) PubMed DOI

Marcus RA, Sutin N. 1985. Electron transfers in chemistry and biology. BBA 811, 265-322.

Paddon-Row MN. 2003. Orbital interactions and long-range electron transfer. Adv. Phys. Org. Chem. 38, 1-85.

Nakanishi M, Sokolov AP. 2015. Dielectric Spectroscopy of Hydrated Biomacromolecules. In Dielectric relaxation in biological systems. Oxford, UK: Oxford University Press.

van Mourik F, Frese RN, van der Zwan G, Cogdell RJ, van Grondelle R. 2003. Direct observation of solvation dynamics and dielectric relaxation in the photosynthetic light-harvesting-2 complex of Rhodopseudomonas acidophila. J. Phys. Chem. B 107, 2156-2161. (10.1021/jp026726u) DOI

Kleinfeld D, Okamura MY, Feher G. 1984. Electron-transfer in reaction centers of Rhodopseudomonas sphaeroides. Determination of the charge recombination pathway of D+QAQB- and free-energy and kinetic relations between QA-QB and QAQB-. BBA 766, 126-140. PubMed

Kleinfeld D, Okamura MY, Feher G. 1984. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochem 23, 5780-5786. (10.1021/bi00319a017) PubMed DOI

Goushcha AO, Kharkyanen VN, Scott GW, Holzwarth AR. 2000. Self-regulation phenomena in bacterial reaction centers. I. General theory. Biophys. J. 79, 1237-1252. (10.1016/S0006-3495(00)76378-8) PubMed DOI PMC

Christophorov L, Holzwarth A, Kharkyanen V. 2003. Conformational regulation in single molecule reactions. Ukr J. Phys. 48, 672-680.

Abgaryan GA, Christophorov LN, Goushcha AO, Holzwarth AR, Kharkyanen VN, Knox PP, Lukashev EA. 1998. Effects of mutual influence of photoinduced electron transitions and slow structural rearrangements in bacterial photosynthetic reaction centers. J. Biol. Phys. 24, 1-17. (10.1023/A:1005039023702) PubMed DOI PMC

Goushcha AO, Manzo AJ, Scott GW, Christophorov LN, Knox PP, Barabash YM, Kapoustina MT, Berezetska NM, Kharkyanen VN. 2003. Self-regulation phenomena applied to bacterial reaction centers: 2. Nonequilibrium adiabatic potential: dark and light conformations revisited. Biophys. J. 84(2 Pt 1), 1146-1160. (10.1016/S0006-3495(03)74930-3) PubMed DOI PMC

Andréasson U, Andréasson LE. 2003. Characterization of a semi-stable, charge-separated state in reaction centers from Rhodobacter sphaeroides. Photosynth. Res. 75, 223-233. (10.1023/A:1023944605460) PubMed DOI

Deshmukh SS, Williams JC, Allen JP, Kalman L. 2011b. Light-induced conformational changes in photosynthetic reaction centers: dielectric relaxation in the vicinity of the dimer. Biochem 50, 340-348. (10.1021/bi101496c) PubMed DOI

Deshmukh SS, Tang K, Kalman L. 2011a. Lipid binding to the carotenoid binding site in photosynthetic reaction centers. J. Am. Chem. Soc. 133, 16 309-16 316. (10.1021/ja207750z) PubMed DOI

Lukashev EP, Knox PP, Krasilnikov PM, Seifullina NK, Rubin AB. 2014. Mechanisms of anomalous temperature dependence of the recombination of the photoseparated charges between bacteriochlorophyll and primary quinone in Rb. Sphaeroides: the role of RC hydrogen bonds. Dokl Biochem. Biophys. 459, 199-203. (10.1134/S1607672914060052) PubMed DOI

Sipka G, Kis M, Maróti P. 2018a. Characterization of mercury(II)-induced inhibition of photochemistry in the reaction center of photosynthetic bacteria. Photosynth. Res. 136, 379-392. (10.1007/s11120-017-0474-8) PubMed DOI

Malferrari M, Mezzetti A, Francia F, Venturoli G. 2013. Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. BBA 1827, 328-339. (10.1016/j.bbabio.2012.10.009) PubMed DOI

Sipka G, et al. 2021. Light-adapted charge-separated state of photosystem II: structural and functional dynamics of the closed reaction center. Plant Cell 33, 1286-1302. (10.1093/plcell/koab008) PubMed DOI PMC

Allen JP, Chamberlain KD, Williams JC. In press. Identification of amino acid residues in a proton release pathway near the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Photosynth. Res. 1-12. (10.1007/s11120-022-00968-x) PubMed DOI

Nabedryk E, Bagley KA, Thibodeau DL, Bauscher M, Mäntele W, Breton J. 1990. A protein conformational change associated with the photoreduction of the primary and secondary quinones in the bacterial reaction center. FEBS Lett. 266, 59-62. (10.1016/0014-5793(90)81506-J) PubMed DOI

Brzezinski P, Andréasson LE. 1995. Trypsin treatment of reaction centers from Rhodobacter sphaeroides in the dark and under illumination: protein structural changes follow charge separation. Biochem 34, 7498-7506. (10.1021/bi00022a025) PubMed DOI

Kálmán L, Maróti P. 1997. Conformation-activated protonation in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides. Biochem 36, 15 269-15 276. (10.1021/bi971882q) PubMed DOI

McMahon BH, Muller JD, Wraight CA, Nienhaus GU. 1998. Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys. J. 74, 2567-2587. (10.1016/S0006-3495(98)77964-0) PubMed DOI PMC

Graige MS, Feher G, Okamura MY. 1998. Conformational gating of the electron transfer reaction QA-.QB –> QAQB-. in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc. Natl Acad. Sci. USA 95, 11 679-11 684. (10.1073/pnas.95.20.11679) PubMed DOI PMC

Smirnova IA, Blomberg A, Andréasson LE, Brzezinski P. 1998. Localization of light-induced structural changes in bacterial photosynthetic reaction centers. Photosynth. Res. 56, 45-55. (10.1023/A:1005934411312) DOI

Mauzerall DC, Gunner MR, Zhang JW. 1995. Volume contraction on photoexcitation of the reaction-center from rhodobacter-sphaeroides R-26 - internal probe of dielectrics. Biophys. J. 68, 275-280. (10.1016/S0006-3495(95)80185-2) PubMed DOI PMC

Nagy L, Kiss V, Brumfeld V, Malkin S. 2001. Thermal and structural changes of photosynthetic reaction centers characterized by photoacoustic detection with a broad frequency band hydrophone. Photochem. Photobiol. 74, 81-87. (10.1562/0031-8655(2001)074<0081:TASCOP>2.0.CO;2) PubMed DOI

Knox PP, Venediktov PS, Kononenko AA, Garab GI, Faludidaniel A. 1984. Role of electric polarization in the thermo-luminescence of chloroplasts. Photochem. Photobiol. 40, 119-125. (10.1111/j.1751-1097.1984.tb04562.x) DOI

Moise N, Moya I. 2004. Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the IP thermal phase. BBA 1657, 33-46. (10.1016/j.bbabio.2004.04.001) PubMed DOI

Nagy L, Kiss V, Brumfeld V, Osvay K, Borzsonyi A, Magyar M, Szabo T, Dorogi M, Malkin S. 2015. Thermal effects and structural changes of photosynthetic reaction centers characterized by wide frequency band hydrophone: effects of carotenoids and terbutryn. Photochem. Photobiol. 91, 1368-1375. (10.1111/php.12511) PubMed DOI

Spence JCH. 2017. XFELs for structure and dynamics in biology. IUCrJ 4(Pt 4), 322-339. (10.1107/S2052252517005760) PubMed DOI PMC

Hind G, Wall JS, Varkonyi Z, Istokovics A, Lambrev PH, Garab G. 2014. Membrane crystals of plant light-harvesting complex II disassemble reversibly in light. Plant Cell Physiol. 55, 1296-1303. (10.1093/pcp/pcu064) PubMed DOI PMC

Gulbinas V, Karpicz R, Garab G, Valkunas L. 2006. Nonequilibrium heating in LHCII complexes monitored by ultrafast absorbance transients. Biochem 45, 9559-9565. (10.1021/bi060048a) PubMed DOI

Wöhri AB, et al. 2010. Light-induced structural changes in a photosynthetic reaction center caught by Laue diffraction. Science 328, 630-633. (10.1126/science.1186159) PubMed DOI

Dods R, et al. 2021. Ultrafast structural changes within a photosynthetic reaction centre. Nature 589, 310. (10.1038/s41586-020-3000-7) PubMed DOI

Hekstra DR, White KI, Socolich MA, Henning RW, Srajer V, Ranganathan R. 2016. Electric-field-stimulated protein mechanics. Nature 540, 400-405. (10.1038/nature20571) PubMed DOI PMC

Knox PP, Garab GI. 1982. The effect of a permanent electric field on thermoluminescence of chloroplasts. Photochem. Photobiol. 35, 733-736. (10.1111/j.1751-1097.1982.tb02637.x) DOI

Gall A, Ellervee A, Bellissent-Funel MC, Robert B, Freiberg A. 2001. Effect of high pressure on the photochemical reaction center from Rhodobacter sphaeroides R26.1. Biophys. J. 80, 1487-1497. (10.1016/S0006-3495(01)76121-8) PubMed DOI PMC

Ivancich A, Lutz M, Mattioli TA. 1997. Temperature-dependent behavior of bacteriochlorophyll and bacteriopheophytin in the photosynthetic reaction center from Rhodobacter sphaeroides. Biochem 36, 3242-3253. (10.1021/bi962483i) PubMed DOI

Gall A, Ellervee A, Robert B, Freiberg A. 2004. The effect of internal voids in membrane proteins: high-pressure study of two photochemical reaction centres from Rhodobacter sphaeroides. FEBS Lett. 560, 221-225. (10.1016/S0014-5793(04)00117-6) PubMed DOI

Timpmann K, Kangur L, Lohmus A, Freiberg A. 2017. High-pressure modulation of the structure of the bacterial photochemical reaction center at physiological and cryogenic temperatures. J. Phys. B 50, 144006. (10.1088/1361-6455/aa77e4) DOI

Gall B, Ellervee A, Tars M, Scheer H, Freiberg A. 1997. Pressure effects on absorption spectra of the isolated reaction center of Photosystem II. Photosynth. Res. 52, 225-231. (10.1023/A:1005876310854) DOI

Braslavsky SE, Heibel GE. 1992. Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem. Rev. 92, 1381-1410. (10.1021/cr00014a007) DOI

Arata H, Parson WW. 1981. Enthalpy and volume changes accompanying electron transfer from P-870 to quinones in Rhodopseudomonas sphaeroides reaction centers. BBA 636, 70-81. PubMed

Brumfeld V, Nagy L, Kiss V, Malkin S. 1999. Wide-frequency hydrophone detection of laser-induced photoacoustic signals in photosynthesis. Photochem. Photobiol. 70, 607-615. (10.1111/j.1751-1097.1999.tb08259.x) DOI

Terazima M. 2022. Revealing protein reactions using transient grating method: photo-induced heating, volume change, and diffusion change. J. Appl. Phys. 131, 140902. (10.1063/5.0087049) DOI

Inoue K, Sasaki J, Morisaki M, Tokunaga F, Terazima M. 2004. Time-resolved detection of sensory rhodopsin II-transducer interaction. Biophys. J. 87, 2587-2597. (10.1529/biophysj.104.043521) PubMed DOI PMC

Nakasone Y, Ono TA, Ishii A, Masuda S, Terazima M. 2007. Transient dimerization and conformational change of a BLUF protein: YcgF. J. Am. Chem. Soc. 129, 7028-7035. (10.1021/ja065682q) PubMed DOI

Terazima M. 2013. Transient grating spectroscopy: dynamics of photoreceptors. In Encyclopedia of biophysics (eds Roberts GCK), pp. 2634-2638. Berlin, Heidelberg: Springer.

Nagy L, Maróti P, Terazima M. 2008. Spectrally silent light induced conformation change in photosynthetic reaction centers. FEBS Lett. 582, 3657-3662. (10.1016/j.febslet.2008.09.048) PubMed DOI

Ohmori H, Nagy L, Dorogi M, Terazima M. 2008. Charge stabilization in reaction center protein investigated by optical heterodyne detected transient grating spectroscopy. Eur. Biophys. J. Biophys. 37, 1167-1174. (10.1007/s00249-008-0294-z) PubMed DOI

Duysens LMN, Sweers HE. 1963. Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In Studies on microalgae and photosynthetic bacteria, pp. 353-372. Tokyo: Japanese Society of Plant Physiologists, University of Tokyo Press.

Duysens LNM. 1951. Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature 168, 548-550. (10.1038/168548a0) PubMed DOI

Sipka G, Maróti P. 2018. Photoprotection in intact cells of photosynthetic bacteria: quenching of bacteriochlorophyll fluorescence by carotenoid triplets. Photosynth. Res. 136, 17-30. (10.1007/s11120-017-0434-3) PubMed DOI

Sipka G, Kis M, Smart JL, Maróti P. 2018b. Fluorescence induction of photosynthetic bacteria. Photosynthetica 56, 125-131. (10.1007/s11099-017-0756-6) DOI

Maróti P, Kovács IA, Kis M, Smart JL, Iglói F. 2020. Correlated clusters of closed reaction centers during induction of intact cells of photosynthetic bacteria. Sci. Rep. 10, 14012. (10.1038/s41598-020-70966-3) PubMed DOI PMC

Joliot A, Joliot P. 1964. Étude cinétique de la réaction photochimique libérant l'oxygéne au cours de la photosynthése. CR Acad. Sci. Paris 258, 4622-4625. (in French). PubMed

Stirbet A. 2013. Excitonic connectivity between photosystem II units: what is it, and how to measure it? Photosynth. Res. 116, 189-214. (10.1007/s11120-013-9863-9) PubMed DOI

Bahatyrova S, Frese RN, van der Werf KO, Otto C, Hunter CN, Olsen JD. 2004b. Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy: functional significance for bacterial photosynthesis. J. Biol. Chem. 279, 21 327-21 333. (10.1074/jbc.M313039200) PubMed DOI

Lambrev PH, Akhtar P, Tan HS. 2020. Insights into the mechanisms and dynamics of energy transfer in plant light-harvesting complexes from two-dimensional electronic spectroscopy. BBA 1861, 148050. (10.1016/j.bbabio.2019.07.005) PubMed DOI

Papageorgiou GC, Govindjee. 2004. Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Netherlands: Springer.

Schreiber U, Klughammer C. 2021. Evidence for variable chlorophyll fluorescence of photosystem I in vivo. Photosynth. Res. 149, 213-231. (10.1007/s11120-020-00814-y) PubMed DOI PMC

Strasser RJ, Tsimilli-Michael M, Srivastava A. 2004. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration (eds Papageorgiou GC, Govindjee), vol. 19, pp. 463-495. Dordrecht: Springer.

Stirbet A, Govindjee. 2012. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth. Res. 113, 15-61. (10.1007/s11120-012-9754-5) PubMed DOI

Butler WL. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 29, 345-378. (10.1146/annurev.pp.29.060178.002021) DOI

Duysens LN. 1978. Transfer and trapping of excitation energy in photosystem II. Ciba Found. Symp. 61, 323-340. PubMed

Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. BBA 990, 87-92.

Delosme R. 1967. Study of the induction of fluorescence in green algae and chloroplasts at the onset of an intense illumination. BBA 143, 108-128. PubMed

Joliot P, Joliot A. 1979. Comparative study of the fluorescence yield and of the C550 absorption change at room temperature. BBA 546, 93-105. (10.1016/0005-2728(79)90173-7) PubMed DOI

Magyar M, et al. 2018. Rate-limiting steps in the dark-to-light transition of photosystem II - revealed by chlorophyll-a fluorescence induction. Sci. Rep. 8, 2755. (10.1038/s41598-018-21195-2) PubMed DOI PMC

Neubauer C, Schreiber U. 1987. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination .1. Saturation characteristics and partial control by the photosystem-Ii acceptor side. Z. Naturforsch. C 42, 1246-1254. (10.1515/znc-1987-11-1217) DOI

Lazar D, Pospisil P. 1999. Mathematical simulation of chlorophyll a fluorescence rise measured with 3-(3 ‘,4 ‘-dichlorophenyl)-1,1-dimethylure barley leaves at room and high temperatures. Eur. Biophys. J. 28, 468-477. (10.1007/s002490050229) PubMed DOI

Schansker G, Tóth SZ, Kovács L, Holzwarth AR, Garab G. 2011. Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. BBA 1807, 1032-1043. (10.1016/j.bbabio.2011.05.022) PubMed DOI

Laisk A, Oja V. 2020. Variable fluorescence of closed photochemical reaction centers. Photosynth. Res. 143, 335-346. (10.1007/s11120-020-00712-3) PubMed DOI

Treves H, et al. 2016. The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytol. 210, 1229-1243. (10.1111/nph.13870) PubMed DOI

Vavilin DV, Ermakova-Gerdes SY, Keilty AT, Vermaas WF. 1999. Tryptophan at position 181 of the D2 protein of photosystem II confers quenching of variable fluorescence of chlorophyll: implications for the mechanism of energy-dependent quenching. Biochem 38, 14 690-14 696. (10.1021/bi9915622) PubMed DOI

Vredenberg WJ. 2008. Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. Photosynth. Res. 96, 83-97. (10.1007/s11120-007-9287-5) PubMed DOI

France LL, Geacintov NE, Breton J, Valkunas L. 1992. The dependence of the degrees of sigmoidicities of fluorescence induction curves in spinach-chloroplasts on the duration of actinic pulses in pump-probe experiments. BBA 1101, 105-119.

Barzda V, Jennings RC, Zucchelli G, Garab G. 1999. Kinetic analysis of the light-induced fluorescence quenching in light-harvesting chlorophyll a/b pigment-protein complex of photosystem II. Photochem. Photobiol. 70, 751-759. (10.1562/0031-8655(1999)070<0751:KAOTLI>2.3.CO;2) DOI

Barzda V, Istokovics A, Simidjiev I, Garab G. 1996. Light-induced reversible changes in the chiral macroorganization and in the excitation energy dissipation of thylakoid membranes and macroaggregates of purified LHCII. Biophys. J. 70, Tu536-Tu536.

Sipka G, et al. 2019. Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. Physiol. Plant. 166, 22-32. (10.1111/ppl.12945) PubMed DOI

Shibata Y, Nishi S, Kawakami K, Shen JR, Renger T. 2013. Photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy meets theory. JACS 135, 6903-6914. (10.1021/ja312586p) PubMed DOI PMC

Fried SD, Boxer SG. 2017. Electric fields and enzyme catalysis. Annu. Rev. Biochem. 86, 387-415. (10.1146/annurev-biochem-061516-044432) PubMed DOI PMC

Dau H, Sauer K. 1992. Electric-field effect on the picosecond fluorescence of photosystem-II and its relation to the energetics and kinetics of primary charge separation. BBA 1102, 91-106.

Vredenberg W. 2011. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems. Biosystems 103, 138-151. (10.1016/j.biosystems.2010.10.016) PubMed DOI

Magyar M, Akhtar P, Sipka G, Han W, Li X, Han G, Shen JR, Lambrev PH, Garab G. 2022. Dependence of the rate-limiting steps in the dark-to-light transition of photosystem II on the lipidic environment of the reaction center. Photosynthetica 60, 147-156. (10.32615/ps.2022.016) DOI

Nagy L, Milano F, Dorogi M, Agostiano A, Laczko G, Szebenyi K, Varo G, Trotta M, Maróti P. 2004. Protein/lipid interaction in the bacterial photosynthetic reaction center: phosphatidylcholine and phosphatidylglycerol modify the free energy levels of the quinones. Biochem 43, 12 913-12 923. (10.1021/bi0489356) PubMed DOI

Gombos Z, Varkonyi Z, Hagio M, Iwaki M, Kovacs L, Masamoto K, Itoh S, Wada H. 2002. Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochem 41, 3796-3802. (10.1021/bi011884h) PubMed DOI

Shlyk-Kerner O, Samish I, Kaftan D, Holland N, Sai PSM, Kless H, Scherz A. 2006. Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature. Nature 442, 827-830. (10.1038/nature04947) PubMed DOI

Strasser RJ, Srivastava A, Govindjee. 1995. Polyphasic chlorophyll-a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 61, 32-42. (10.1111/j.1751-1097.1995.tb09240.x) DOI

Schreiber U, Bilger W, Neubauer C. 1995. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of photosynthesis (eds Schulze E-D, Caldwell MM), pp. 49-70. Berlin, Heidelberg: Springer.

Kramer DM, Avenson TJ, Edwards GE. 2004. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci. 9, 349-357. (10.1016/j.tplants.2004.05.001) PubMed DOI

Horton P, Ruban A. 2005. Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. J. Exp. Bot. 56, 365-373. (10.1093/jxb/eri023) PubMed DOI

Tóth SZ, Schansker G, Garab G, Strasser RJ. 2007. Photosynthetic electron transport activity in heat-treated barley leaves: the role of internal alternative electron donors to photosystem II. BBA 1767, 295-305. PubMed

Asztalos E, Sipka G, Kis M, Trotta M, Maróti P. 2012. The reaction center is the sensitive target of the mercury(II) ion in intact cells of photosynthetic bacteria. Photosynth. Res. 112, 129-140. (10.1007/s11120-012-9749-2) PubMed DOI

Prasil O, Kolber ZS, Falkowski PG. 2018. Control of the maximal chlorophyll fluorescence yield by the Q(B) binding site. Photosynthetica 56, 150-162. (10.1007/s11099-018-0768-x) DOI

Gorbunov MY, Falkowski PG. 2022. Using chlorophyll fluorescence to determine the fate of photons absorbed by phytoplankton in the World's Oceans. Annu. Rev. Mar. Sci. 14, 213-238. (10.1146/annurev-marine-032621-122346) PubMed DOI

Diner BA, Bautista JA, Nixon PJ, Berthomieu C, Hienerwadel R, Britt RD, Vermaas WFJ, Chisholm DA. 2004. Coordination of proton and electron transfer from the redox-active tyrosine, Y-Z, of photosystem II and examination of the electrostatic influence of oxidized tyrosine, Y-D(center dot)(H+). Phys. Chem. Chem. Phys. 6, 4844-4850. (10.1039/B407423H) DOI

Nakamura S, Noguchi T. 2015. Infrared detection of a proton released from tyrosine YD to the bulk upon its photo-oxidation in photosystem II. Biochem 54, 5045-5053. (10.1021/acs.biochem.5b00568) PubMed DOI

Ahmadova N, Ho FM, Styring S, Mamedov F. 2017. Tyrozine D oxidation and redox equilibrium in photosystem II. Biochim. Biophys. Acta Bioenerg. 1858, 407-417. (10.1016/j.bbabio.2017.02.011) PubMed DOI

Delosme R, Joliot P. 2002. Period four oscillations in chlorophyll a fluorescence. Photosynth. Res. 73, 165-168. (10.1023/A:1020430610627) PubMed DOI

Vavilin DV, Vermaas WF. 2000. Mutations in the CD-loop region of the D2 protein in Synechocystis sp. PCC 6803 modify charge recombination pathways in photosystem II in vivo. Biochem 39, 14 831-14 838. (10.1021/bi001679m) PubMed DOI

Romero E, Diner BA, Nixon PJ, Coleman WJ, Dekker JP, van Grondelle R. 2012. Mixed exciton-charge-transfer states in photosystem II: stark spectroscopy on site-directed mutants. Biophys. J. 103, 185-194. (10.1016/j.bpj.2012.06.026) PubMed DOI PMC

Akhtar P, Sipka G, Han W, Li X, Han G, Shen JR, Garab G, Tan HS, Lambrev PH. 2022. Ultrafast excitation quenching by the oxidized photosystem II reaction center. J. Chem. Phys. 156, 145101. (10.1063/5.0086046) PubMed DOI

Nguyen HH, Loukianov AD, Ogilvie JP, Abramavicius D. 2020. Two-dimensional electronic stark spectroscopy of a photosynthetic dimer. J. Chem. Phys. 153, 144203. (10.1063/5.0021529) PubMed DOI

Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J, Zigmantas D, van Grondelle R. 2014. Quantum coherence in photosynthesis for efficient solar energy conversion. Nat. Phys. 10, 676-682. (10.1038/nphys3017) PubMed DOI PMC

Novoderezhkin VI, Romero E, Prior J, van Grondelle R. 2017. Exciton-vibrational resonance and dynamics of charge separation in the photosystem II reaction center. Phys. Chem. Chem. Phys. 19, 5195-5208. (10.1039/C6CP07308E) PubMed DOI

Nguyen HH, Song Y, Maret EL, Silori Y, Willow R, Yocum CF, Ogilvie JP. 2022. Charge separation in the photosystem II reaction center resolved by multispectral two-dimensional electronic spectroscopy. arXiv (10.48550/ARXIV.2209.09992) PubMed DOI PMC

Policht VR, Niedringhaus A, Willow R, Laible PD, Bocian DF, Kirmaier C, Holten D, Mancal T, Ogilvie JP. 2022. Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center. Sci. Adv. 8, eabk0953. (10.1126/sciadv.abk0953) PubMed DOI PMC

Fülöp JA, Tzortzakis S, Kampfrath T. 2020. Laser-driven strong-field terahertz sources. Adv. Opt. Mater. 8, 1900681. (10.1002/adom.201900681) DOI

Sipka G, Nagy L, Magyar M, Akhtar P, Shen J-R, Holzwarth AR, Lambrev PH, Garab G. 2022. Light-induced reversible reorganizations in closed Type II reaction centre complexes: physiological roles and physical mechanisms. Figshare. (10.6084/m9.figshare.c.6328733) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace