Early onset of APC/C activity renders SAC inefficient in mouse embryos

. 2024 ; 12 () : 1355979. [epub] 20240313

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38544818

Control mechanisms of spindle assembly and chromosome segregation are vital for preventing aneuploidy during cell division. The mammalian germ cells and embryos are prone to chromosome segregation errors, and the resulting aneuploidy is a major cause of termination of development or severe developmental disorders. Here we focused on early mouse embryos, and using combination of methods involving microinjection, immunodetection and confocal live cell imaging, we concentrated on the Spindle Assembly Checkpoint (SAC) and Anaphase Promoting Complex/Cyclosome (APC/C). These are two important mechanisms cooperating during mitosis to ensure accurate chromosome segregation, and assessed their activity during the first two mitoses after fertilization. Our results showed, that in zygotes and 2-cell embryos, the SAC core protein Mad1 shows very low levels on kinetochores in comparison to oocytes and its interaction with chromosomes is restricted to a short time interval after nuclear membrane disassembly (NEBD). Exposure of 2-cell embryos to low levels of spindle poison does not prevent anaphase, despite the spindle damage induced by the drug. Lastly, the APC/C is activated coincidentally with NEBD before the spindle assembly completion. This early onset of APC/C activity, together with precocious relocalization of Mad1 from chromosomes, prevents proper surveillance of spindle assembly by SAC. The results contribute to the understanding of the origin of aneuploidy in early embryos.

Zobrazit více v PubMed

Ajduk A., Strauss B., Pines J., Zernicka-Goetz M. (2017). Delayed APC/C activation extends the first mitosis of mouse embryos. Sci. Rep. 7, 9682. 10.1038/s41598-017-09526-1 PubMed DOI PMC

Allais A., Fitzharris G. (2022). Absence of a robust mitotic timer mechanism in early preimplantation mouse embryos leads to chromosome instability. Development 149, dev200391. 10.1242/dev.200391 PubMed DOI

Bolton H., Graham S. J. L., Van der Aa N., Kumar P., Theunis K., Fernandez Gallardo E., et al. (2016). Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun. 7, 11165. 10.1038/ncomms11165 PubMed DOI PMC

Carbone L., Chavez S. L. (2015). Mammalian pre-implantation chromosomal instability: species comparison, evolutionary considerations, and pathological correlations. Syst. Biol. Reprod. Med. 61, 321–335. 10.3109/19396368.2015.1073406 PubMed DOI PMC

Charalambous C., Webster A., Schuh M. (2022). Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat. Rev. Mol. Cell. Biol. 24, 27–44. 10.1038/s41580-022-00517-3 PubMed DOI

Chenevert J., Roca M., Besnardeau L., Ruggiero A., Nabi D., McDougall A., et al. (2020). The spindle assembly checkpoint functions during early development in non-chordate embryos. Cells 9, 1087. 10.3390/cells9051087 PubMed DOI PMC

Clute P., Masui Y. (1995). Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos. Dev. Biol. 171, 273–285. 10.1006/dbio.1995.1280 PubMed DOI

Clute P., Pines J. (1999). Temporal and spatial control of cyclin B1 destruction in metaphase. Nat. Cell. Biol. 1, 82–87. 10.1038/10049 PubMed DOI

Curtis N. L., Ruda G. F., Brennan P., Bolanos-Garcia V. M. (2020). Deregulation of chromosome segregation and cancer. Annu. Rev. Cancer Biol. 4, 257–278. 10.1146/annurev-cancerbio-030419-033541 DOI

Daughtry B. L., Rosenkrantz J. L., Lazar N. H., Fei S. S., Redmayne N., Torkenczy K. A., et al. (2019). Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res. 29, 367–382. 10.1101/gr.239830.118 PubMed DOI PMC

Destouni A., Zamani Esteki M., Catteeuw M., Tšuiko O., Dimitriadou E., Smits K., et al. (2016). Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy. Genome Res. 26, 567–578. 10.1101/gr.200527.115 PubMed DOI PMC

Dobles M., Liberal V., Scott M. L., Benezra R., Sorger P. K. (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell. 101, 635–645. 10.1016/s0092-8674(00)80875-2 PubMed DOI

El Yakoubi W., Buffin E., Cladière D., Gryaznova Y., Berenguer I., Touati S. A., et al. (2017). Mps1 kinase-dependent Sgo2 centromere localisation mediates cohesin protection in mouse oocyte meiosis I. Nat. Commun. 8, 694. 10.1038/s41467-017-00774-3 PubMed DOI PMC

Encalada S. E., Willis J., Lyczak R., Bowerman B. (2005). A spindle checkpoint functions during mitosis in the early Caenorhabditis elegans embryo. Mol. Biol. Cell. 16, 1056–1070. 10.1091/mbc.e04-08-0712 PubMed DOI PMC

Glotzer M., Murray A. W., Kirschner M. W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138. 10.1038/349132a0 PubMed DOI

Gui L., Homer H. (2012). Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes. Development 139, 1941–1946. 10.1242/dev.078352 PubMed DOI PMC

Hached K., Xie S. Z., Buffin E., Cladière D., Rachez C., Sacras M., et al. (2011). Mps1 at kinetochores is essential for female mouse meiosis I. Development 138, 2261–2271. 10.1242/dev.061317 PubMed DOI

Hassold T., Hunt P. (2001). To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291. 10.1038/35066065 PubMed DOI

Hiruma Y., Koch A., Dharadhar S., Joosten R. P., Perrakis A. (2016). Structural basis of reversine selectivity in inhibiting Mps1 more potently than aurora B kinase. Proteins 84, 1761–1766. 10.1002/prot.25174 PubMed DOI

Hornak M., Oracova E., Hulinska P., Urbankova L., Rubes J. (2012). Aneuploidy detection in pigs using comparative genomic hybridization: from the oocytes to blastocysts. PLoS One 7, e30335. 10.1371/journal.pone.0030335 PubMed DOI PMC

Jacobs K., Van De Velde H., De Paepe C., Sermon K., Spits C. (2017). Mitotic spindle disruption in human preimplantation embryos activates the spindle assembly checkpoint but not apoptosis until Day 5 of development. Mol. Hum. Reprod. 23, 321–329. 10.1093/molehr/gax007 PubMed DOI

Ju J. Q., Li X. H., Pan M. H., Xu Y., Xu Y., Sun M. H., et al. (2021). Mps1 controls spindle assembly, SAC, and DNA repair in the first cleavage of mouse early embryos. J. Cell. Biochem. 122, 290–300. 10.1002/jcb.29858 PubMed DOI

Kolano A., Brunet S., Silk A. D., Cleveland D. W., Verlhac M. H. (2012). Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension. Proc. Natl. Acad. Sci. U. S. A. 109, E1858–E1867. 10.1073/pnas.1204686109 PubMed DOI PMC

Lane S. I., Yun Y., Jones K. T. (2012). Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension. Development 139, 1947–1955. 10.1242/dev.077040 PubMed DOI

Lara-Gonzalez P., Pines J., Desai A. (2021). Spindle assembly checkpoint activation and silencing at kinetochores. Semin. Cell. Dev. Biol. S1084-9521 (21), 00160. 10.1016/j.semcdb.2021.06.009 PubMed DOI PMC

Lok T. M., Wang Y., Xu W. K., Xie S., Ma H. T., Poon R. Y. C. (2020). Mitotic slippage is determined by p31comet and the weakening of the spindle-assembly checkpoint. Oncogene 39, 2819–2834. 10.1038/s41388-020-1187-6 PubMed DOI PMC

Luo Y., Ahmad E., Liu S. T. (2018). MAD1: kinetochore receptors and catalytic mechanisms. Front. Cell. Dev. Biol. 6, 51. 10.3389/fcell.2018.00051 PubMed DOI PMC

Mcainsh A. D., Kops G. J. P. L. (2023). Principles and dynamics of spindle assembly checkpoint signalling. Nat. Rev. Mol. Cell. Biol. 24, 543–559. 10.1038/s41580-023-00593-z PubMed DOI

Mcguinness B. E., Anger M., Kouznetsova A., Gil-Bernabé A. M., Helmhart W., Kudo N. R., et al. (2009). Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 19, 369–380. 10.1016/j.cub.2009.01.064 PubMed DOI

Mihajlovic A. I., Fitzharris G. (2018). Segregating chromosomes in the mammalian oocyte. Curr. Biol. 28, R895–R907. 10.1016/j.cub.2018.06.057 PubMed DOI

Musacchio A. (2011). Spindle assembly checkpoint: the third decade. Philos. Trans. R. Soc. Lond B Biol. Sci. 366, 3595–3604. 10.1098/rstb.2011.0072 PubMed DOI PMC

Musacchio A. (2015). The molecular Biology of spindle assembly checkpoint signaling dynamics. Curr. Biol. 25, R1002–R1018. 10.1016/j.cub.2015.08.051 PubMed DOI

Nagaoka S. I., Hassold T. J., Hunt P. A. (2012). Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504. 10.1038/nrg3245 PubMed DOI PMC

Nagaoka S. I., Hodges C. A., Albertini D. F., Hunt P. A. (2011). Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr. Biol. 21, 651–657. 10.1016/j.cub.2011.03.003 PubMed DOI PMC

Pauerova T., Radonova L., Horakova A., Knott J. G., Anger M. (2021). Accumulation of securin on spindle during female meiosis I. Front. Cell. Dev. Biol. 9, 1752. 10.3389/fcell.2021.701179 PubMed DOI PMC

Pauerova T., Radonova L., Kovacovicova K., Novakova L., Skultety M., Anger M. (2020). Aneuploidy during the onset of mouse embryo development. Reproduction 160, 773–782. 10.1530/REP-20-0086 PubMed DOI

Reichmann J., Nijmeijer B., Hossain M. J., Eguren M., Schneider I., Politi A. Z., et al. (2018). Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science 361, 189–193. 10.1126/science.aar7462 PubMed DOI

Santaguida S., Tighe A., D’alise A. M., Taylor S. S., Musacchio A. (2010). Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell. Biol. 190, 73–87. 10.1083/jcb.201001036 PubMed DOI PMC

Sebestova J., Danylevska A., Novakova L., Kubelka M., Anger M. (2012). Lack of response to unaligned chromosomes in mammalian female gametes. Cell. Cycle 11, 3011–3018. 10.4161/cc.21398 PubMed DOI PMC

Shahbazi M. N., Wang T., Tao X., Weatherbee B. A. T., Sun L., Zhan Y., et al. (2020). Developmental potential of aneuploid human embryos cultured beyond implantation. Nat. Commun. 11, 3987. 10.1038/s41467-020-17764-7 PubMed DOI PMC

Shindo N., Otsuki M., Uchida K. S. K., Hirota T. (2021). Prolonged mitosis causes separase deregulation and chromosome nondisjunction. Cell. Rep. 34, 108652. 10.1016/j.celrep.2020.108652 PubMed DOI

Thomas C., Wetherall B., Levasseur M. D., Harris R. J., Kerridge S. T., Higgins J. M. G., et al. (2021). A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes. Nat. Commun. 12, 4322. 10.1038/s41467-021-24554-2 PubMed DOI PMC

Touati S. A., Buffin E., Cladière D., Hached K., Rachez C., van Deursen J. M., et al. (2015). Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest. Nat. Commun. 6, 6946. 10.1038/ncomms7946 PubMed DOI PMC

Tšuiko O., Catteeuw M., Zamani Esteki M., Destouni A., Bogado Pascottini O., Besenfelder U., et al. (2017). Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos. Hum. Reprod. 32, 2348–2357. 10.1093/humrep/dex286 PubMed DOI

Vázquez-Diez C., Fitzharris G. (2018). Causes and consequences of chromosome segregation error in preimplantation embryos. Reproduction 155, R63–R76. 10.1530/REP-17-0569 PubMed DOI

Vázquez-Diez C., Paim L. M. G., Fitzharris G. (2019). Cell-size-independent spindle checkpoint failure underlies chromosome segregation error in mouse embryos. Curr. Biol. 29, 865–873. 10.1016/j.cub.2018.12.042 PubMed DOI

Wei Y., Multi S., Yang C. R., Ma J., Zhang Q. H., Wang Z. B., et al. (2011). Spindle assembly checkpoint regulates mitotic cell cycle progression during preimplantation embryo development. PLoS One 6, e21557. 10.1371/journal.pone.0021557 PubMed DOI PMC

Zhang D., Li M., Ma W., Hou Y., Li Y. H., Li S. W., et al. (2005). Localization of mitotic arrest deficient 1 (MAD1) in mouse oocytes during the first meiosis and its functions as a spindle checkpoint protein. Biol. Reprod. 72, 58–68. 10.1095/biolreprod.104.032987 PubMed DOI

Zhang M., Kothari P., Lampson M. A. (2015). Spindle assembly checkpoint acquisition at the mid-blastula transition. PLoS One 10, e0119285. 10.1371/journal.pone.0119285 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...