Accumulation of Securin on Spindle During Female Meiosis I
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34395431
PubMed Central
PMC8358270
DOI
10.3389/fcell.2021.701179
Knihovny.cz E-zdroje
Chromosome segregation during female meiosis is frequently incorrect with severe consequences including termination of further development or severe disorders, such as Down syndrome. Accurate chromosome segregation requires tight control of a protease called separase, which facilitates the separation of sister chromatids by cohesin cleavage. There are several control mechanisms in place, including the binding of specific protein inhibitor securin, phosphorylation by cyclin-dependent kinase 1 (CDK1), and complex with SGO2 and MAD2 proteins. All these mechanisms restrict the activation of separase for the time when all chromosomes are properly attached to the spindle. In our study, we focused on securin and compared the expression profile of endogenous protein with exogenous securin, which is widely used to study chromosome segregation. We also compared the dynamics of securin proteolysis in meiosis I and meiosis II. Our study revealed that the expression of both endogenous and exogenous securin in oocytes is compartmentalized and that this protein accumulates on the spindle during meiosis I. We believe that this might have a direct impact on the regulation of separase activity in the vicinity of the chromosomes.
Department of Animal Science Michigan State University East Lansing MI United States
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Genetics and Reproduction Veterinary Research Institute Brno Czechia
Zobrazit více v PubMed
Bernhardt M. L., Stein P., Carvacho I., Krapp C., Ardestani G., Mehregan A., et al. (2018). TRPM7 and CaV3.2 channels mediate Ca2+ influx required for egg activation at fertilization. Proc. Natl. Acad. Sci. U.S.A. 115 E10370–E10378. PubMed PMC
Chang H. Y., Levasseur M., Jones K. T. (2004). Degradation of APCcdc20 and APCcdh1 substrates during the second meiotic division in mouse eggs. J. Cell Sci. 117 6289–6296. 10.1242/jcs.01567 PubMed DOI
Ciosk R., Zachariae W., Michaelis C., Shevchenko A., Mann M., Nasmyth K. (1998). An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93 1067–1076. 10.1016/s0092-8674(00)81211-8 PubMed DOI
Gregan J., Rumpf C., Li Z., Cipak L. (2008). What makes centromeric cohesion resistant to separase cleavage during meiosis I but not during meiosis II. Cell Cycle 7 151–153. 10.4161/cc.7.2.5325 PubMed DOI PMC
Hagting A., Den Elzen N., Vodermaier H. C., Waizenegger I. C., Peters J. M., Pines J. (2002). Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157 1125–1137. 10.1083/jcb.200111001 PubMed DOI PMC
Han S. J., Martins J. P. S., Yang Y., Kang M. K., Daldello E. M., Conti M. (2017). The translation of cyclin B1 and B2 is differentially regulated during mouse oocyte reentry into the meiotic cell cycle. Sci. Rep. 7:14077. PubMed PMC
Jensen S., Segal M., Clarke D. J., Reed S. I. (2001). A novel role of the budding yeast separin Esp1 in anaphase spindle elongation: evidence that proper spindle association of Esp1 is regulated by Pds1. J. Cell Biol. 152 27–40. 10.1083/jcb.152.1.27 PubMed DOI PMC
Karasu M. E., Bouftas N., Keeney S., Wassmann K. (2019). Cyclin B3 promotes anaphase I onset in oocyte meiosis. J. Cell Biol. 218 1265–1281. 10.1083/jcb.201808091 PubMed DOI PMC
Kitajima T. S., Miyazaki Y., Yamamoto M., Watanabe Y. (2003). Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO J. 22 5643–5653. 10.1093/emboj/cdg527 PubMed DOI PMC
Konishi M., Shindo N., Komiya M., Tanaka K., Itoh T., Hirota T. (2018). Quantitative analyses of the metaphase-to-anaphase transition reveal differential kinetic regulation for securin and cyclin B1. Biomed. Res. 39 75–85. 10.2220/biomedres.39.75 PubMed DOI
Kudo N. R., Wassmann K., Anger M., Schuh M., Wirth K. G., Xu H., et al. (2006). Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126 135–146. 10.1016/j.cell.2006.05.033 PubMed DOI
Kumada K., Nakamura T., Nagao K., Funabiki H., Nakagawa T., Yanagida M. (1998). Cut1 is loaded onto the spindle by binding to Cut2 and promotes anaphase spindle movement upon Cut2 proteolysis. Curr. Biol. 8 633–641. 10.1016/s0960-9822(98)70250-7 PubMed DOI
Madgwick S., Jones K. T. (2007). How eggs arrest at metaphase II: MPF stabilisation plus APC/C inhibition equals cytostatic factor. Cell Div. 2:4. PubMed PMC
Madgwick S., Nixon V. L., Chang H. Y., Herbert M., Levasseur M., Jones K. T. (2004). Maintenance of sister chromatid attachment in mouse eggs through maturation-promoting factor activity. Dev. Biol. 275 68–81. 10.1016/j.ydbio.2004.07.024 PubMed DOI
McGuinness B. E., Anger M., Kouznetsova A., Gil-Bernabé A. M., Helmhart W., Kudo N. R., et al. (2009). Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 19 369–380. 10.1016/j.cub.2009.01.064 PubMed DOI
Meadows J. C., Millar J. B. (2015). Sharpening the anaphase switch. Biochem. Soc. Trans. 43 19–22. 10.1042/bst20140250 PubMed DOI
Mei J., Huang X., Zhang P. (2001). Securin is not required for cellular viability, but is required for normal growth of mouse embryonic fibroblasts. Curr. Biol. 11 1197–1201. 10.1016/s0960-9822(01)00325-6 PubMed DOI
Meneau F., Dupré A., Jessus C., Daldello E. M. (2020). Translational control of xenopus oocyte meiosis: toward the genomic era. Cells 9:1502. 10.3390/cells9061502 PubMed DOI PMC
Nabti I., Grimes R., Sarna H., Marangos P., Carroll J. (2017). Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nat. Commun. 8:15346. PubMed PMC
Nabti I., Reis A., Levasseur M., Stemmann O., Jones K. T. (2008). Securin and not CDK1/cyclin B1 regulates sister chromatid disjunction during meiosis II in mouse eggs. Dev. Biol. 321 379–386. 10.1016/j.ydbio.2008.06.036 PubMed DOI
Nikalayevich E., Bouftas N., Wassmann K. (2018). Detection of separase activity using a cleavage sensor in live mouse oocytes. Methods Mol. Biol. 1818 99–112. 10.1007/978-1-4939-8603-3_11 PubMed DOI
Pfleghaar K., Heubes S., Cox J., Stemmann O., Speicher M. R. (2005). Securin is not required for chromosomal stability in human cells. PLoS Biol. 3:e416. 10.1371/journal.pbio.0030416 PubMed DOI PMC
Pines J. (2011). Cubism and the cell cycle: the many faces of the APC/C. Nat. Rev. Mol. Cell Biol. 12 427–438. 10.1038/nrm3132 PubMed DOI
Rabitsch K. P., Gregan J., Schleiffer A., Javerzat J. P., Eisenhaber F., Nasmyth K. (2004). Two fission yeast homologs of Drosophila mei-S332 are required for chromosome segregation during meiosis I and II. Curr. Biol. 14 287–301. 10.1016/j.cub.2004.01.051 PubMed DOI
Radonova L., Pauerova T., Jansová D., Danadova J., Skultety M., Kubelka M., et al. (2020). Cyclin A1 in oocytes prevents chromosome segregation and anaphase entry. Sci. Rep. 10:7455. PubMed PMC
Reis A., Chang H. Y., Levasseur M., Jones K. T. (2006). APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nat. Cell Biol. 8 539–540. 10.1038/ncb1406 PubMed DOI PMC
Richter J. D. (2007). CPEB: a life in translation. Trends Biochem. Sci. 32 279–285. 10.1016/j.tibs.2007.04.004 PubMed DOI
Salah S. M., Nasmyth K. (2000). Destruction of the securin Pds1p occurs at the onset of anaphase during both meiotic divisions in yeast. Chromosoma 109 27–34. 10.1007/s004120050409 PubMed DOI
Thomas C., Levasseur M. D., Harris R. J., Davies O. R., Madgwick S. (2019). Synchronous chromosome segregation in mouse oocytes is ensured by biphasic securin destruction and cyclin B1-Cdk1. bioRxiv [Preprint]. 10.1101/824763 DOI
Uzawa S., Samejima I., Hirano T., Tanaka K., Yanagida M. (1990). The fission yeast cut1+ gene regulates spindle pole body duplication and has homology to the budding yeast ESP1 gene. Cell 62 913–925. 10.1016/0092-8674(90)90266-h PubMed DOI
Yamamoto A., Guacci V., Koshland D. (1996). Pds1p is required for faithful execution of anaphase in the yeast. Saccharomyces cerevisiae. J. Cell Biol. 133 85–97. 10.1083/jcb.133.1.85 PubMed DOI PMC
Early onset of APC/C activity renders SAC inefficient in mouse embryos