Aneuploidy detection in pigs using comparative genomic hybridization: from the oocytes to blastocysts
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
22291937
PubMed Central
PMC3264574
DOI
10.1371/journal.pone.0030335
PII: PONE-D-11-19745
Knihovny.cz E-zdroje
- MeSH
- aneuploidie * MeSH
- blastocysta cytologie metabolismus fyziologie MeSH
- embryo savčí MeSH
- gestační stáří MeSH
- nemoci prasat diagnóza embryologie genetika MeSH
- oocyty cytologie metabolismus fyziologie MeSH
- prasata genetika MeSH
- srovnávací genomová hybridizace metody veterinární MeSH
- těhotenství MeSH
- ztráta embrya diagnóza genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
Data on the frequency of aneuploidy in farm animals are lacking and there is the need for a reliable technique which is capable of detecting all chromosomes simultaneously in a single cell. With the employment of comparative genomic hybridization coupled with the whole genome amplification technique, this study brings new information regarding the aneuploidy of individual chromosomes in pigs. Focus is directed on in vivo porcine blastocysts and late morulas, 4.7% of which were found to carry chromosomal abnormality. Further, ploidy abnormalities were examined using FISH in a sample of porcine embryos. True polyploidy was relatively rare (1.6%), whilst mixoploidy was presented in 46.8% of embryos, however it was restricted to only a small number of cells per embryo. The combined data indicates that aneuploidy is not a prevalent cause of embryo mortality in pigs.
Zobrazit více v PubMed
King WA. Chromosome variation in the embryos of domestic animals. Cytogenet Genome Res. 2008;120:81–90. PubMed
Pauciullo A, Nicodemo D, Castello A, Cosenza G, Ramunno L, et al. Chromosomal unbalancements in sperm and oocytes of two Italian cattle breeds as determined by dual color fluorescent in situ hybridization (FISH). Ital J Anim Sci. 2009;8:123–125.
Coppola G, Alexander B, Di Berardino D, St John E, Basrur PK, et al. Use of cross-species in-situ hybridization (ZOO-FISH) to assess chromosome abnormalities in day-6 in-vivo- or in-vitro-produced sheep embryos. Chromosome Res. 2007;15:399–408. PubMed
Rambags BPB, Krijtenburg PJ, Van Drie HF, Lazzari G, Galli C, et al. Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Mol Reprod Dev. 2005;72:77–87. PubMed
Zuccotti M, Boiani M, Garagna S, Redi CA. Analysis of aneuploidy rate in antral and ovulated mouse oocytes during female aging. Mol Reprod Dev. 1998;50:305–312. PubMed
Ducos A, Berland HM, Pinton A, Guillemot E, Seguela A, et al. Nine new cases of reciprocal translocation in the domestic pig (Sus scrofa domestica L.). J Hered. 1998;89:136–142. PubMed
Hornak M, Jeseta M, Musilova P, Pavlok A, Kubelka M, et al. Frequency of aneuploidy related to age in porcine oocytes. PLoS ONE. 2011;6(4):e18892. PubMed PMC
Hornak M, Hulinska P, Musilova P, Kubickova S, Rubes J. Investigation of chromosome aneuploidies in early porcine embryos using comparative genomic hybridization. Cytogenet Genome Res. 2009;126:210–216. PubMed
Gutierrez-Mateo C, Colls P, Sanchez-Garcia J, Escudero T, Prates R, et al. Validation of microarray comparative genomic hybridization for comprehensive chromosome analysis of embryos. Fertil Steril. 2011;95:953–958. PubMed
Keskintepe L, Sher G, Keskintepe M. Reproductive oocyte/embryo genetic analysis: comparison between fluorescence in-situ hybridization and comparative genomic hybridization. Reprod Biomed Online. 2007;15:303–309. PubMed
Gabriel AS, Thornhill AR, Ottolini CS, Gordon A, Brown APC, et al. Array comparative genomic hybridisation on first polar bodies suggests that non-disjunction is not the predominant mechanism leading to aneuploidy in humans. J Med Genet. 2011;48:433–437. PubMed
Lechniak D, Warzych E, Pers-Kamczyc E, Sosnowski J, Antosik P, et al. Gilts and sows produce similar rate of diploid oocytes in vitro whereas the incidence of aneuploidy differs significantly. Theriogenology. 2007;68:755–762. PubMed
Zudova D, Rezacova O, Kubickova S, Rubes J. Aneuploidy detection in porcine embryos using fluorescence in situ hybridization. Cytogenet Genome Res. 2003;102:179–183. PubMed
Vozdova M, Machatkova M, Kubickova S, Zudova D, Jokesova E, et al. Frequency of aneuploidy in pig oocytes matured in vitro and of the corresponding first polar bodies detected by fluorescent in situ hybridization. Theriogenology. 2001;56:771–776. PubMed
Rubes J, Vozdova M, Kubickova S. Aneuploidy in pig sperm: multicolor fluorescence in situ hybridization using probes for chromosomes 1, 10, and Y. Cytogenet Cell Genet. 1999;85:200–204. PubMed
Sosnowski J, Waroczyk M, Switonski M. Chromosome abnormalities in secondary pig oocytes matured in vitro. Theriogenology. 2003;60:571–581. PubMed
Frumkin T, Malcov M, Yaron Y, Ben-Yosef D. Elucidating the origin of chromosomal aberrations in IVF embryos by preimplantation genetic analysis. Mol Cell Endocrinol. 2008;282:112–119. PubMed
Johnson DS, Cinnioglu C, Ross R, Filby A, Gemelos G, et al. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod. 2010;16:944–949. PubMed PMC
Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15:577–583. PubMed
McCauley TC, Mazza MR, Didion BA, Mao J, Wu G, et al. Chromosomal abnormalities in day-6, in vitro-produced pig embryos. Theriogenology. 2003;60:1569–1580. PubMed
Zijlstra C, Kidson A, Schoevers EJ, Daemen AJJM, Tharasanit T, et al. Blastocyst morphology, actin cytoskeleton quality and chromosome content are correlated with embryo quality in the pig. Theriogenology. 2008;70:923–935. PubMed
Dolch KM, Chrisman CL. Cytogenetic Analysis of Pre-Implantation Blastocysts from Prepuberal Gilts Treated with Gonadotropins. Am J Vet Res. 1981;42:344–346. PubMed
Vanderhoeven FA, Cuijpers MP, Deboer P. Karyotypes of 3-Day-Old Or 4-Day-Old Pig Embryos After Short Invitro Culture. J Reprod Fertil. 1985;75:593–597. PubMed
Long SE, Williams CV. A Comparison of the Chromosome Complement of Inner Cell Mass and Trophoblast Cells in Day-10 Pig Embryos. J Reprod Fertil. 1982;66:645–648. PubMed
McFeely RA. Chromosome Abnormalities in Early Embryos of Pig. J Reprod Fertil. 1967;13:579–581. PubMed
Moon RG, Rashad MN, Mi MP. Example of Polyploidy in Pig Blastocysts. J Reprod Fertil. 1975;45:147–149. PubMed
Coonen E, Dumoulin JCM, Ramaekers FCS, Hopman AHN. Optimal Preparation of Preimplantation Embryo Interphase Nuclei for Analysis by Fluorescence In-Situ Hybridization. Human Reprod. 1994;9:533–537. PubMed
Yerle M, Goureau A, Gellin J, Le Tissier P, Moran C. Rapid mapping of cosmid clones on pig chromosomes by fluorescence in situ hybridization. Mamm Genome. 1994;5:34–37. PubMed
Koenig JLF, Stormshak F. Cytogenetic Evaluation of Ova from Pubertal and 3rd-Estrous Gilts. Biol Reprod. 1993;49:1158–1162. PubMed
Ulloa CMU, Yoshizawa M, Komoriya E, Mitsui A, Nagai T, et al. The blastocyst production rate and incidence of chromosomal abnormalities by developmental stage in in vitro produced porcine embryos. J Reprod Develop. 2008;54:22–29. PubMed
Early onset of APC/C activity renders SAC inefficient in mouse embryos
Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important?
A high incidence of chromosome abnormalities in two-cell stage porcine IVP embryos