Chromosome Division in Early Embryos-Is Everything under Control? And Is the Cell Size Important?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
19-24528S
Czech Science Foundation
RO 0518
The Ministry of Agriculture of the Czech Republic
PubMed
38396778
PubMed Central
PMC10889803
DOI
10.3390/ijms25042101
PII: ijms25042101
Knihovny.cz E-zdroje
- Klíčová slova
- CDK1, aneuploidy, cell size, chromosome division, embryo, segregation errors, spindle, spindle assembly checkpoint,
- MeSH
- aneuploidie MeSH
- chromozomy MeSH
- embryonální vývoj * genetika MeSH
- lidé MeSH
- savci genetika MeSH
- segregace chromozomů * MeSH
- velikost buňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
Faculty of Science Masaryk University 602 00 Brno Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Science 277 21 Libechov Czech Republic
Zobrazit více v PubMed
Gelens L., Qian J., Bollen M., Saurin A.T. The Importance of Kinase-Phosphatase Integration: Lessons from Mitosis. Trends Cell Biol. 2018;28:6–21. doi: 10.1016/j.tcb.2017.09.005. PubMed DOI
Basu S., Greenwood J., Jones A.W., Nurse P. Core control principles of the eukaryotic cell cycle. Nature. 2022;607:381–386. doi: 10.1038/s41586-022-04798-8. PubMed DOI PMC
Nasa I., Kettenbach A.N. Coordination of Protein Kinase and Phosphoprotein Phosphatase Activities in Mitosis. Front. Cell Dev. Biol. 2018;6:30. doi: 10.3389/fcell.2018.00030. PubMed DOI PMC
Walczak C.E., Heald R. Mechanisms of mitotic spindle assembly and function. Int. Rev. Cytol. 2008;265:111–158. PubMed
Reber S., Hyman A.A. Emergent Properties of the Metaphase Spindle. Cold Spring Harb. Perspect. Biol. 2015;7:a015784. doi: 10.1101/cshperspect.a015784. PubMed DOI PMC
Agircan F.G., Schiebel E., Mardin B.R. Separate to operate: Control of centrosome positioning and separation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369:20130461. doi: 10.1098/rstb.2013.0461. PubMed DOI PMC
Prosser S.L., Pelletier L. Mitotic spindle assembly in animal cells: A fine balancing act. Nat. Rev. Mol. Cell Biol. 2017;18:187–201. doi: 10.1038/nrm.2016.162. PubMed DOI
Hoffmann I. Centrosomes in mitotic spindle assembly and orientation. Curr. Opin. Struct. Biol. 2021;66:193–198. doi: 10.1016/j.sbi.2020.11.003. PubMed DOI
Dunkley S., Scheffler K., Mogessie B. Cytoskeletal form and function in mammalian oocytes and zygotes. Curr. Opin. Cell Biol. 2022;75:102073. doi: 10.1016/j.ceb.2022.02.007. PubMed DOI
Mullen T.J., Davis-Roca A.C., Wignall S.M. Spindle assembly and chromosome dynamics during oocyte meiosis. Curr. Opin. Cell Biol. 2019;60:53–59. doi: 10.1016/j.ceb.2019.03.014. PubMed DOI PMC
Blengini C.S., Schindler K. Acentriolar spindle assembly in mammalian female meiosis and the consequences of its perturbations on human reproduction†. Biol. Reprod. 2022;106:253–263. doi: 10.1093/biolre/ioab210. PubMed DOI PMC
Mihajlovic A.I., FitzHarris G. Segregating Chromosomes in the Mammalian Oocyte. Curr. Biol. 2018;28:R895–R907. doi: 10.1016/j.cub.2018.06.057. PubMed DOI
Mogessie B., Scheffler K., Schuh M. Assembly and Positioning of the Oocyte Meiotic Spindle. Annu. Rev. Cell Dev. Biol. 2018;34:381–403. doi: 10.1146/annurev-cellbio-100616-060553. PubMed DOI
Dumont J., Million K., Sunderland K., Rassinier P., Lim H., Leader B., Verlhac M.H. Formin-2 is required for spindle migration and for the late steps of cytokinesis in mouse oocytes. Dev. Biol. 2007;301:254–265. doi: 10.1016/j.ydbio.2006.08.044. PubMed DOI
Azoury J., Lee K.W., Georget V., Rassinier P., Leader B., Verlhac M.H. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 2008;18:1514–1519. doi: 10.1016/j.cub.2008.08.044. PubMed DOI
Schuh M., Ellenberg J. A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 2008;18:1986–1992. doi: 10.1016/j.cub.2008.11.022. PubMed DOI
Roeles J., Tsiavaliaris G. Actin-microtubule interplay coordinates spindle assembly in human oocytes. Nat. Commun. 2019;10:4651. doi: 10.1038/s41467-019-12674-9. PubMed DOI PMC
Harasimov K., Uraji J., Mönnich E.U., Holubcová Z., Elder K., Blayney M., Schuh M. Actin-driven chromosome clustering facilitates fast and complete chromosome capture in mammalian oocytes. Nat. Cell Biol. 2023;25:439–452. doi: 10.1038/s41556-022-01082-9. PubMed DOI PMC
Mogessie B., Schuh M. Actin protects mammalian eggs against chromosome segregation errors. Science. 2017;357:eaal1647. doi: 10.1126/science.aal1647. PubMed DOI
Almonacid M., Terret M.É., Verlhac M.H. Actin-based spindle positioning: New insights from female gametes. J. Cell Sci. 2014;127:477–483. doi: 10.1242/jcs.142711. PubMed DOI
Manandhar G., Sutovsky P., Joshi H.C., Stearns T., Schatten G. Centrosome reduction during mouse spermiogenesis. Dev. Biol. 1998;203:424–434. doi: 10.1006/dbio.1998.8947. PubMed DOI
Khanal S., Jaiswal A., Chowdanayaka R., Puente N., Turner K., Assefa K.Y., Nawras M., Back E.D., Royfman A., Burkett J.P., et al. The evolution of centriole degradation in mouse sperm. Nat. Commun. 2024;15:117. doi: 10.1038/s41467-023-44411-8. PubMed DOI PMC
Gueth-Hallonet C., Antony C., Aghion J., Santa-Maria A., Lajoie-Mazenc I., Wright M., Maro B. gamma-Tubulin is present in acentriolar MTOCs during early mouse development. J. Cell Sci. 1993;105:157–166. doi: 10.1242/jcs.105.1.157. PubMed DOI
Courtois A., Schuh M., Ellenberg J., Hiiragi T. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J. Cell Biol. 2012;198:357–370. doi: 10.1083/jcb.201202135. PubMed DOI PMC
Clift D., Schuh M. Restarting life: Fertilization and the transition from meiosis to mitosis. Nat. Rev. Mol. Cell Biol. 2013;14:549–562. doi: 10.1038/nrm3643. PubMed DOI PMC
Avidor-Reiss T., Mazur M., Fishman E.L., Sindhwani P. The Role of Sperm Centrioles in Human Reproduction—The Known and the Unknown. Front. Cell Dev. Biol. 2019;7:188. doi: 10.3389/fcell.2019.00188. PubMed DOI PMC
Aljiboury A., Hehnly H. The centrosome—Diverse functions in fertilization and development across species. J. Cell Sci. 2023;136:jcs261387. doi: 10.1242/jcs.261387. PubMed DOI PMC
Amargant F., Pujol A., Ferrer-Vaquer A., Durban M., Martínez M., Vassena R., Vernos I. The human sperm basal body is a complex centrosome important for embryo preimplantation development. Mol. Hum. Reprod. 2021;27:gaab062. doi: 10.1093/molehr/gaab062. PubMed DOI PMC
Uzbekov R., Singina G.N., Shedova E.N., Banliat C., Avidor-Reiss T., Uzbekova S. Centrosome Formation in the Bovine Early Embryo. Cells. 2023;12:1335. doi: 10.3390/cells12091335. PubMed DOI PMC
Kops G.J., Weaver B.A., Cleveland D.W. On the road to cancer: Aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer. 2005;5:773–785. doi: 10.1038/nrc1714. PubMed DOI
Lakhani A.A., Thompson S.L., Sheltzer J.M. Aneuploidy in human cancer: New tools and perspectives. Trends Genet. 2023;39:968–980. doi: 10.1016/j.tig.2023.09.002. PubMed DOI PMC
Mazzagatti A., Engel J.L., Ly P. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors. Mol. Cell. 2023;84:55–69. doi: 10.1016/j.molcel.2023.11.002. PubMed DOI PMC
Musacchio A. The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics. Curr. Biol. 2015;25:R1002–R1018. doi: 10.1016/j.cub.2015.08.051. PubMed DOI
McAinsh A.D., Kops GJ P.L. Principles and dynamics of spindle assembly checkpoint signalling. Nat. Rev. Mol. Cell Biol. 2023;24:543–559. doi: 10.1038/s41580-023-00593-z. PubMed DOI
Jackman M., Marcozzi C., Barbiero M., Pardo M., Yu L., Tyson A.L., Choudhary J.S., Pines J. Cyclin B1-Cdk1 facilitates MAD1 release from the nuclear pore to ensure a robust spindle checkpoint. J. Cell Biol. 2020;219:e201907082. doi: 10.1083/jcb.201907082. PubMed DOI PMC
Sivakumar S., Gorbsky G.J. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat. Rev. Mol. Cell Biol. 2015;16:82–94. doi: 10.1038/nrm3934. PubMed DOI PMC
Watson E.R., Brown N.G., Peters J.M., Stark H., Schulman B.A. Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division. Trends Cell Biol. 2019;29:117–134. doi: 10.1016/j.tcb.2018.09.007. PubMed DOI PMC
Hoyt M.A., Totis L., Roberts B.T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 1991;66:507–517. doi: 10.1016/0092-8674(81)90014-3. PubMed DOI
Li R., Murray A.W. Feedback control of mitosis in budding yeast. Cell. 1991;66:519–531. doi: 10.1016/0092-8674(81)90015-5. PubMed DOI
Foley E.A., Kapoor T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 2013;14:25–37. doi: 10.1038/nrm3494. PubMed DOI PMC
Lara-Gonzalez P., Pines J., Desai A. Spindle assembly checkpoint activation and silencing at kinetochores. Semin. Cell Dev. Biol. 2021;117:86–98. doi: 10.1016/j.semcdb.2021.06.009. PubMed DOI PMC
Santaguida S., Tighe A., D’Alise A.M., Taylor S.S., Musacchio A. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J. Cell Biol. 2010;190:73–87. doi: 10.1083/jcb.201001036. PubMed DOI PMC
Yamagishi Y., Yang C.H., Tanno Y., Watanabe Y. MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat. Cell Biol. 2012;14:746–752. doi: 10.1038/ncb2515. PubMed DOI
Raisch T., Ciossani G., d’Amico E., Cmentowski V., Carmignani S., Maffini S., Merino F., Wohlgemuth S., Vetter I.R., Raunser S., et al. Structure of the RZZ complex and molecular basis of Spindly-driven corona assembly at human kinetochores. EMBO J. 2022;41:e110411. doi: 10.15252/embj.2021110411. PubMed DOI PMC
Sudakin V., Chan G.K., Yen T.J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 2001;154:925–936. doi: 10.1083/jcb.200102093. PubMed DOI PMC
Fischer E.S., Yu CW H., Hevler J.F., McLaughlin S.H., Maslen S.L., Heck AJ R., Freund SM V., Barford D. Juxtaposition of Bub1 and Cdc20 on phosphorylated Mad1 during catalytic mitotic checkpoint complex assembly. Nat. Commun. 2022;13:6381. doi: 10.1038/s41467-022-34058-2. PubMed DOI PMC
Varma D., Salmon E.D. The KMN protein network--chief conductors of the kinetochore orchestra. J. Cell Sci. 2012;125:5927–5936. doi: 10.1242/jcs.093724. PubMed DOI PMC
Mapelli M., Massimiliano L., Santaguida S., Musacchio A. The Mad2 conformational dimer: Structure and implications for the spindle assembly checkpoint. Cell. 2007;131:730–743. doi: 10.1016/j.cell.2007.08.049. PubMed DOI
Yang M., Li B., Tomchick D.R., Machius M., Rizo J., Yu H., Luo X. p31comet blocks Mad2 activation through structural mimicry. Cell. 2007;131:744–755. doi: 10.1016/j.cell.2007.08.048. PubMed DOI PMC
Luo X., Fang G., Coldiron M., Lin Y., Yu H., Kirschner M.W., Wagner G. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat. Struct. Biol. 2000;7:224–229. PubMed
Izawa D., Pines J. The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature. 2015;517:631–634. doi: 10.1038/nature13911. PubMed DOI PMC
Kuhn J., Dumont S. Mammalian kinetochores count attached microtubules in a sensitive and switch-like manner. J. Cell Biol. 2019;218:3583–3596. doi: 10.1083/jcb.201902105. PubMed DOI PMC
Collin P., Nashchekina O., Walker R., Pines J. The spindle assembly checkpoint works like a rheostat rather than a toggle switch. Nat. Cell Biol. 2013;15:1378–1385. doi: 10.1038/ncb2855. PubMed DOI PMC
Dick A.E., Gerlich D.W. Kinetic framework of spindle assembly checkpoint signalling. Nat. Cell Biol. 2013;15:1370–1377. doi: 10.1038/ncb2842. PubMed DOI PMC
Alfieri C., Chang L., Barford D. Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature. 2018;559:274–278. doi: 10.1038/s41586-018-0281-1. PubMed DOI PMC
Kelly A.E., Funabiki H. Correcting aberrant kinetochore microtubule attachments: An Aurora B-centric view. Curr. Opin. Cell Biol. 2009;21:51–58. doi: 10.1016/j.ceb.2009.01.004. PubMed DOI PMC
Cimini D., Howell B., Maddox P., Khodjakov A., Degrassi F., Salmon E.D. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J. Cell Biol. 2001;153:517–528. doi: 10.1083/jcb.153.3.517. PubMed DOI PMC
Gregan J., Polakova S., Zhang L., Tolić-Nørrelykke I.M., Cimini D. Merotelic kinetochore attachment: Causes and effects. Trends Cell Biol. 2011;21:374–381. doi: 10.1016/j.tcb.2011.01.003. PubMed DOI PMC
Petronczki M., Siomos M.F., Nasmyth K. Un ménage à quatre: The molecular biology of chromosome segregation in meiosis. Cell. 2003;112:423–440. doi: 10.1016/S0092-8674(03)00083-7. PubMed DOI
Kitajima T.S. Mechanisms of kinetochore-microtubule attachment errors in mammalian oocytes. Dev. Growth Differ. 2018;60:33–43. doi: 10.1111/dgd.12410. PubMed DOI PMC
Kouznetsova A., Lister L., Nordenskjöld M., Herbert M., Höög C. Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nat. Genet. 2007;39:966–968. doi: 10.1038/ng2065. PubMed DOI
Sakakibara Y., Hashimoto S., Nakaoka Y., Kouznetsova A., Höög C., Kitajima T.S. Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nat. Commun. 2015;6:7550. doi: 10.1038/ncomms8550. PubMed DOI PMC
Lampson M.A., Cheeseman I.M. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends Cell Biol. 2011;21:133–140. doi: 10.1016/j.tcb.2010.10.007. PubMed DOI PMC
Carmena M., Wheelock M., Funabiki H., Earnshaw W.C. The chromosomal passenger complex (CPC): From easy rider to the godfather of mitosis. Nat. Rev. Mol. Cell Biol. 2012;13:789–803. doi: 10.1038/nrm3474. PubMed DOI PMC
Cimini D., Cameron L.A., Salmon E.D. Anaphase spindle mechanics prevent mis-segregation of merotelically oriented chromosomes. Curr. Biol. 2004;14:2149–2155. doi: 10.1016/j.cub.2004.11.029. PubMed DOI
Kamenz J., Hauf S. Slow checkpoint activation kinetics as a safety device in anaphase. Curr. Biol. 2014;24:646–651. doi: 10.1016/j.cub.2014.02.005. PubMed DOI
Maiato H., Silva S. Double-checking chromosome segregation. J. Cell Biol. 2023;222:e202301106. doi: 10.1083/jcb.202301106. PubMed DOI PMC
Bhakta H.H., Refai F.H., Avella M.A. The molecular mechanisms mediating mammalian fertilization. Development. 2019;146:dev176966. doi: 10.1242/dev.176966. PubMed DOI
Gaspa-Toneu L., Peters A.H. Nucleosomes in mammalian sperm: Conveying paternal epigenetic inheritance or subject to reprogramming between generations. Curr. Opin. Genet. Dev. 2023;79:102034. doi: 10.1016/j.gde.2023.102034. PubMed DOI PMC
Saunders C.M., Larman M.G., Parrington J., Cox L.J., Royse J., Blayney L.M., Swann K., Lai F.A. PLC zeta: A sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129:3533–3544. doi: 10.1242/dev.129.15.3533. PubMed DOI
Reichmann J., Nijmeijer B., Hossain M.J., Eguren M., Schneider I., Politi A.Z., Roberti M.J., Hufnagel L., Hiiragi T., Ellenberg J. Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science. 2018;361:189–193. doi: 10.1126/science.aar7462. PubMed DOI
Ciemerych M.A., Maro B., Kubiak J.Z. Control of duration of the first two mitoses in a mouse embryo. Zygote. 1999;7:293–300. doi: 10.1017/S0967199499000696. PubMed DOI
Farrell J.A., O’Farrell P.H. From egg to gastrula: How the cell cycle is remodeled during the Drosophila mid-blastula transition. Annu. Rev. Genet. 2014;48:269–294. doi: 10.1146/annurev-genet-111212-133531. PubMed DOI PMC
Newport J., Kirschner M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell. 1982;30:675–686. PubMed
Bao Z., Zhao Z., Boyle T.J., Murray J.I., Waterston R.H. Control of cell cycle timing during C. elegans embryogenesis. Dev. Biol. 2008;318:65–72. doi: 10.1016/j.ydbio.2008.02.054. PubMed DOI PMC
Fulka J. Checkpoint control of the G2/M phase transition during the first mitotic cycle in mammalian eggs. Human. Reprod. 1999;14:1582–1587. doi: 10.1093/humrep/14.6.1582. PubMed DOI
Ciemerych M.A., Sicinski P. Cell cycle in mouse development. Oncogene. 2005;24:2877–2898. doi: 10.1038/sj.onc.1208608. PubMed DOI
Schulz K.N., Harrison M.M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 2018;20:221–234. doi: 10.1038/s41576-018-0087-x. PubMed DOI PMC
Anger M., Radonova L., Horakova A., Sekach D., Charousova M. Impact of Global Transcriptional Silencing on Cell Cycle Regulation and Chromosome Segregation in Early Mammalian Embryos. Int. J. Mol. Sci. 2021;22:9073. doi: 10.3390/ijms22169073. PubMed DOI PMC
Bennabi I., Terret M.E., Verlhac M.H. Meiotic spindle assembly and chromosome segregation in oocytes. J. Cell Biol. 2016;215:611–619. doi: 10.1083/jcb.201607062. PubMed DOI PMC
Kovacovicova K., Awadova T., Mikel P., Anger M. In Vitro Maturation of Mouse Oocytes Increases the Level of Kif11/Eg5 on Meiosis II Spindles. Biol. Reprod. 2016;95:18. doi: 10.1095/biolreprod.115.133900. PubMed DOI
Vázquez-Diez C., FitzHarris G. Causes and consequences of chromosome segregation error in preimplantation embryos. Reproduction. 2018;155:R63–R76. doi: 10.1530/REP-17-0569. PubMed DOI
Nagaoka S.I., Hassold T.J., Hunt P.A. Human aneuploidy: Mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 2012;13:493–504. doi: 10.1038/nrg3245. PubMed DOI PMC
Mihajlovic A.I., Byers C., Reinholdt L., FitzHarris G. Spindle assembly checkpoint insensitivity allows meiosis-II despite chromosomal defects in aged eggs. EMBO Rep. 2023;24:e57227. doi: 10.15252/embr.202357227. PubMed DOI PMC
Yin L., Mihajlović A.I., Yang G., FitzHarris G. Kinetochore deterioration concommitant with centromere weakening during aging in mouse oocyte meiosis-I. FASEB J. 2023;37:e22922. doi: 10.1096/fj.202300062R. PubMed DOI
Charalambous C., Webster A., Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat. Rev. Mol. Cell Biol. 2022;24:27–44. doi: 10.1038/s41580-022-00517-3. PubMed DOI
Wartosch L., Schindler K., Schuh M., Gruhn J.R., Hoffmann E.R., McCoy R.C., Xing J. Origins and mechanisms leading to aneuploidy in human eggs. Prenat. Diagn. 2021;41:620–630. doi: 10.1002/pd.5927. PubMed DOI PMC
Mihajlovic A.I., Haverfield J., FitzHarris G. Distinct classes of lagging chromosome underpin age-related oocyte aneuploidy in mouse. Dev. Cell. 2021;56:2273–2283.e3. doi: 10.1016/j.devcel.2021.07.022. PubMed DOI
Hassold T., Hunt P. To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2001;2:280–291. doi: 10.1038/35066065. PubMed DOI
Shahbazi M.N., Wang T., Tao X., Weatherbee BA T., Sun L., Zhan Y., Keller L., Smith G.D., Pellicer A., Scott R.T., et al. Developmental potential of aneuploid human embryos cultured beyond implantation. Nat. Commun. 2020;11:3987. doi: 10.1038/s41467-020-17764-7. PubMed DOI PMC
Torres E.M. Consequences of gaining an extra chromosome. Chromosome Res. 2023;31:24. doi: 10.1007/s10577-023-09732-w. PubMed DOI PMC
Krivega M., Stiefel C.M., Storchova Z. Consequences of chromosome gain: A new view on trisomy syndromes. Am. J. Hum. Genet. 2022;109:2126–2140. doi: 10.1016/j.ajhg.2022.10.014. PubMed DOI PMC
Tšuiko O., Catteeuw M., Zamani Esteki M., Destouni A., Bogado Pascottini O., Besenfelder U., Havlicek V., Smits K., Kurg A., Salumets A., et al. Genome stability of bovine in vivo-conceived cleavage-stage embryos is higher compared to in vitro-produced embryos. Hum. Reprod. 2017;32:2348–2357. doi: 10.1093/humrep/dex286. PubMed DOI
Pauerova T., Radonova L., Kovacovicova K., Novakova L., Skultety M., Anger M. Aneuploidy during the onset of mouse embryo development. Reproduction. 2020;160:773–782. doi: 10.1530/REP-20-0086. PubMed DOI
Duncan F.E., Chiang T., Schultz R.M., Lampson M.A. Evidence that a defective spindle assembly checkpoint is not the primary cause of maternal age-associated aneuploidy in mouse eggs. Biol. Reprod. 2009;81:768–776. doi: 10.1095/biolreprod.109.077909. PubMed DOI PMC
Danylevska A., Kovacovicova K., Awadova T., Anger M. The frequency of precocious segregation of sister chromatids in mouse female meiosis I is affected by genetic background. Chromosome Res. 2014;22:365–373. doi: 10.1007/s10577-014-9428-6. PubMed DOI
Carbone L., Chavez S.L. Mammalian pre-implantation chromosomal instability: Species comparison, evolutionary considerations, and pathological correlations. Syst. Biol. Reprod. Med. 2015;61:321–335. doi: 10.3109/19396368.2015.1073406. PubMed DOI PMC
Destouni A., Zamani Esteki M., Catteeuw M., Tšuiko O., Dimitriadou E., Smits K., Kurg A., Salumets A., Van Soom A., Voet T., et al. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy. Genome Res. 2016;26:567–578. doi: 10.1101/gr.200527.115. PubMed DOI PMC
Hornak M., Oracova E., Hulinska P., Urbankova L., Rubes J. Aneuploidy detection in pigs using comparative genomic hybridization: From the oocytes to blastocysts. PLoS ONE. 2012;7:e30335. doi: 10.1371/journal.pone.0030335. PubMed DOI PMC
Daughtry B.L., Rosenkrantz J.L., Lazar N.H., Fei S.S., Redmayne N., Torkenczy K.A., Adey A., Yan M., Gao L., Park B., et al. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion. Genome Res. 2019;29:367–382. doi: 10.1101/gr.239830.118. PubMed DOI PMC
Bolton H., Graham S.J., Van der Aa N., Kumar P., Theunis K., Fernandez Gallardo E., Voet T., Zernicka-Goetz M. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun. 2016;7:11165. doi: 10.1038/ncomms11165. PubMed DOI PMC
Yang M., Rito T., Metzger J., Naftaly J., Soman R., Hu J., Albertini D.F., Barad D.H., Brivanlou A.H., Gleicher N. Depletion of aneuploid cells in human embryos and gastruloids. Nat. Cell Biol. 2021;23:314–321. doi: 10.1038/s41556-021-00660-7. PubMed DOI
Capalbo A., Poli M., Jalas C., Forman E.J., Treff N.R. On the reproductive capabilities of aneuploid human preimplantation embryos. Am. J. Hum. Genet. 2022;109:1572–1581. doi: 10.1016/j.ajhg.2022.07.009. PubMed DOI PMC
Vera-Rodriguez M., Chavez S.L., Rubio C., Reijo Pera R.A., Simon C. Prediction model for aneuploidy in early human embryo development revealed by single-cell analysis. Nat. Commun. 2015;6:7601. doi: 10.1038/ncomms8601. PubMed DOI PMC
Eme L., Trilles A., Moreira D., Brochier-Armanet C. The phylogenomic analysis of the anaphase promoting complex and its targets points to complex and modern-like control of the cell cycle in the last common ancestor of eukaryotes. BMC Evol. Biol. 2011;11:265. doi: 10.1186/1471-2148-11-265. PubMed DOI PMC
Vleugel M., Hoogendoorn E., Snel B., Kops G.J. Evolution and function of the mitotic checkpoint. Dev. Cell. 2012;23:239–250. doi: 10.1016/j.devcel.2012.06.013. PubMed DOI
Kops GJ P.L., Snel B., Tromer E.C. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr. Biol. 2020;30:R589–R602. doi: 10.1016/j.cub.2020.02.021. PubMed DOI
van Hooff J.J., Tromer E., van Wijk L.M., Snel B., Kops G.J. Evolutionary dynamics of the kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep. 2017;18:1559–1571. doi: 10.15252/embr.201744102. PubMed DOI PMC
Tromer E.C., van Hooff J.J., Kops G.J., Snel B. Mosaic origin of the eukaryotic kinetochore. Proc. Natl. Acad. Sci. USA. 2019;116:12873–12882. doi: 10.1073/pnas.1821945116. PubMed DOI PMC
Encalada S.E., Willis J., Lyczak R., Bowerman B. A spindle checkpoint functions during mitosis in the early Caenorhabditis elegans embryo. Mol. Biol. Cell. 2005;16:1056–1070. doi: 10.1091/mbc.e04-08-0712. PubMed DOI PMC
Essex A., Dammermann A., Lewellyn L., Oegema K., Desai A. Systematic analysis in Caenorhabditis elegans reveals that the spindle checkpoint is composed of two largely independent branches. Mol. Biol. Cell. 2009;20:1252–1267. doi: 10.1091/mbc.e08-10-1047. PubMed DOI PMC
Gerhold A.R., Ryan J., Vallée-Trudeau J.N., Dorn J.F., Labbé J.C., Maddox P.S. Investigating the regulation of stem and progenitor cell mitotic progression by in situ imaging. Curr. Biol. 2015;25:1123–1134. doi: 10.1016/j.cub.2015.02.054. PubMed DOI
Gerhold A.R., Poupart V., Labbé J.C., Maddox P.S. Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo. Mol. Biol. Cell. 2018;29:1435–1448. doi: 10.1091/mbc.E18-04-0215. PubMed DOI PMC
Zhang M., Kothari P., Lampson M.A. Spindle assembly checkpoint acquisition at the mid-blastula transition. PLoS ONE. 2015;10:e0119285. doi: 10.1371/journal.pone.0119285. PubMed DOI PMC
Shao H., Li R., Ma C., Chen E., Liu X.J. Xenopus oocyte meiosis lacks spindle assembly checkpoint control. J. Cell Biol. 2013;201:191–200. doi: 10.1083/jcb.201211041. PubMed DOI PMC
Clute P., Masui Y. Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos. Dev. Biol. 1995;171:273–285. doi: 10.1006/dbio.1995.1280. PubMed DOI
Minshull J., Sun H., Tonks N.K., Murray A.W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell. 1994;79:475–486. doi: 10.1016/0092-8674(94)90256-9. PubMed DOI
Roca M., Besnardeau L., Christians E., McDougall A., Chenevert J., Castagnetti S. Acquisition of the spindle assembly checkpoint and its modulation by cell fate and cell size in a chordate embryo. Development. 2023;150:dev201145. doi: 10.1242/dev.201145. PubMed DOI
Chenevert J., Roca M., Besnardeau L., Ruggiero A., Nabi D., McDougall A., Copley R.R., Christians E., Castagnetti S. The Spindle Assembly Checkpoint Functions during Early Development in Non-Chordate Embryos. Cells. 2020;9:1087. doi: 10.3390/cells9051087. PubMed DOI PMC
Paps J., Rossi M.E., Bowles A., Álvarez-Presas M. Assembling animals: Trees, genomes, cells, and contrast to plants. Front. Ecol. Evol. 2023;11:1185566. doi: 10.3389/fevo.2023.1185566. DOI
McGuinness B.E., Anger M., Kouznetsova A., Gil-Bernabé A.M., Helmhart W., Kudo N.R., Wuensche A., Taylor S., Hoog C., Novak B., et al. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 2009;19:369–380. doi: 10.1016/j.cub.2009.01.064. PubMed DOI
Touati S.A., Buffin E., Cladière D., Hached K., Rachez C., van Deursen J.M., Wassmann K. Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest. Nat. Commun. 2015;6:6946. doi: 10.1038/ncomms7946. PubMed DOI PMC
El Yakoubi W., Buffin E., Cladière D., Gryaznova Y., Berenguer I., Touati S.A., Gómez R., Suja J.A., van Deursen J.M., Wassmann K. Mps1 kinase-dependent Sgo2 centromere localisation mediates cohesin protection in mouse oocyte meiosis I. Nat. Commun. 2017;8:694. doi: 10.1038/s41467-017-00774-3. PubMed DOI PMC
Nagaoka S.I., Hodges C.A., Albertini D.F., Hunt P.A. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr. Biol. 2011;21:651–657. doi: 10.1016/j.cub.2011.03.003. PubMed DOI PMC
Sebestova J., Danylevska A., Novakova L., Kubelka M., Anger M. Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle. 2012;11:3011–3018. doi: 10.4161/cc.21398. PubMed DOI PMC
Kolano A., Brunet S., Silk A.D., Cleveland D.W., Verlhac M.H. Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension. Proc. Natl. Acad. Sci. USA. 2012;109:E1858–E1867. doi: 10.1073/pnas.1204686109. PubMed DOI PMC
Lane S.I., Yun Y., Jones K.T. Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension. Development. 2012;139:1947–1955. doi: 10.1242/dev.077040. PubMed DOI
Gui L., Homer H. Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes. Development. 2012;139:1941–1946. doi: 10.1242/dev.078352. PubMed DOI PMC
Holubcová Z., Blayney M., Elder K., Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348:1143–1147. doi: 10.1126/science.aaa9529. PubMed DOI PMC
Haverfield J., Dean N.L., Nöel D., Rémillard-Labrosse G., Paradis V., Kadoch I.J., FitzHarris G. Tri-directional anaphases as a novel chromosome segregation defect in human oocytes. Hum. Reprod. 2017;32:1293–1303. doi: 10.1093/humrep/dex083. PubMed DOI PMC
Macaulay A.D., Allais A., FitzHarris G. Chromosome dynamics and spindle microtubule establishment in mouse embryos. FASEB J. 2020;34:8057–8067. doi: 10.1096/fj.201902947R. PubMed DOI
Allais A., FitzHarris G. Absence of a robust mitotic timer mechanism in early preimplantation mouse embryos leads to chromosome instability. Development. 2022;149:dev200391. doi: 10.1242/dev.200391. PubMed DOI
Vázquez-Diez C., Yamagata K., Trivedi S., Haverfield J., FitzHarris G. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. Proc. Natl. Acad. Sci. USA. 2016;113:626–631. doi: 10.1073/pnas.1517628112. PubMed DOI PMC
Kort D.H., Chia G., Treff N.R., Tanaka A.J., Xing T., Vensand L.B., Micucci S., Prosser R., Lobo R.A., Sauer M.V., et al. Human embryos commonly form abnormal nuclei during development: A mechanism of DNA damage, embryonic aneuploidy, and developmental arrest. Hum. Reprod. 2016;31:312–323. doi: 10.1093/humrep/dev281. PubMed DOI
Yao T., Ueda A., Khurchabilig A., Mashiko D., Tokoro M., Nagai H., Sho T., Matoba S., Yamagata K., Sugimura S. Micronucleus formation during early cleavage division is a potential hallmark of preimplantation embryonic loss in cattle. Biochem. Biophys. Res. Commun. 2022;617:25–32. doi: 10.1016/j.bbrc.2022.05.075. PubMed DOI
Jacobs K., Van de Velde H., De Paepe C., Sermon K., Spits C. Mitotic spindle disruption in human preimplantation embryos activates the spindle assembly checkpoint but not apoptosis until Day 5 of development. Mol. Hum. Reprod. 2017;23:321–329. doi: 10.1093/molehr/gax007. PubMed DOI
Wei Y., Multi S., Yang C.R., Ma J., Zhang Q.H., Wang Z.B., Li M., Wei L., Ge Z.J., Zhang C.H., et al. Spindle assembly checkpoint regulates mitotic cell cycle progression during preimplantation embryo development. PLoS ONE. 2011;6:e21557. doi: 10.1371/journal.pone.0021557. PubMed DOI PMC
Radonova L., Svobodova T., Skultety M., Mrkva O., Libichova L., Stein P., Anger M. ProTAME Arrest in Mammalian Oocytes and Embryos Does Not Require Spindle Assembly Checkpoint Activity. Int. J. Mol. Sci. 2019;20:4537. doi: 10.3390/ijms20184537. PubMed DOI PMC
Vázquez-Diez C., Paim LM G., FitzHarris G. Cell-Size-Independent Spindle Checkpoint Failure Underlies Chromosome Segregation Error in Mouse Embryos. Curr. Biol. 2019;29:865–873.e3. doi: 10.1016/j.cub.2018.12.042. PubMed DOI
Dobles M., Liberal V., Scott M.L., Benezra R., Sorger P.K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell. 2000;101:635–645. doi: 10.1016/S0092-8674(00)80875-2. PubMed DOI
Wang Q., Liu T., Fang Y., Xie S., Huang X., Mahmood R., Ramaswamy G., Sakamoto K.M., Darzynkiewicz Z., Xu M., et al. BUBR1 deficiency results in abnormal megakaryopoiesis. Blood. 2004;103:1278–1285. doi: 10.1182/blood-2003-06-2158. PubMed DOI
Iwanaga Y., Chi Y.H., Miyazato A., Sheleg S., Haller K., Peloponese J.M., Li Y., Ward J.M., Benezra R., Jeang K.T. Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Res. 2007;67:160–166. doi: 10.1158/0008-5472.CAN-06-3326. PubMed DOI
Jeganathan K., Malureanu L., Baker D.J., Abraham S.C., van Deursen J.M. Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J. Cell Biol. 2007;179:255–267. doi: 10.1083/jcb.200706015. PubMed DOI PMC
Tilston V., Taylor S.S., Perera D. Inactivating the spindle checkpoint kinase Bub1 during embryonic development results in a global shutdown of proliferation. BMC Res. Notes. 2009;2:190. doi: 10.1186/1756-0500-2-190. PubMed DOI PMC
Galli M., Morgan D.O. Cell Size Determines the Strength of the Spindle Assembly Checkpoint during Embryonic Development. Dev. Cell. 2016;36:344–352. doi: 10.1016/j.devcel.2016.01.003. PubMed DOI PMC
Kyogoku H., Kitajima T.S. Large Cytoplasm Is Linked to the Error-Prone Nature of Oocytes. Dev. Cell. 2017;41:287–298.e4. doi: 10.1016/j.devcel.2017.04.009. PubMed DOI
Lane SI R., Jones K.T. Chromosome biorientation and APC activity remain uncoupled in oocytes with reduced volume. J. Cell Biol. 2017;216:3949–3957. doi: 10.1083/jcb.201606134. PubMed DOI PMC