Role of chloride ion in hydroxyl radical production in photosystem II under heat stress: electron paramagnetic resonance spin-trapping study

. 2012 Jun ; 44 (3) : 365-72. [epub] 20120331

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22466970

Hydroxyl radical (HO•) production in photosystem II (PSII) was studied by electron paramagnetic resonance (EPR) spin-trapping technique. It is demonstrated here that the exposure of PSII membranes to heat stress (40 °C) results in HO• formation, as monitored by the formation of EMPO-OH adduct EPR signal. The presence of different exogenous halides significantly suppressed the EMPO-OH adduct EPR signal in PSII membranes under heat stress. The addition of exogenous acetate and blocker of chloride channel suppressed the EMPO-OH adduct EPR signal, whereas the blocker of calcium channel did not affect the EMPO-OH adduct EPR signal. Heat-induced hydrogen peroxide (H₂O₂) production was studied by amplex red fluorescent assay. The presence of exogenous halides, acetate and chloride blocker showed the suppression of H₂O₂ production in PSII membranes under heat stress. Based on our results, it is proposed that the formation of HO• under heat stress is linked to uncontrolled accessibility of water to the water-splitting manganese complex caused by the release of chloride ion on the electron donor side of PSII. Uncontrolled water accessibility to the water-splitting manganese complex causes the formation of H₂O₂ due to improper water oxidation, which leads to the formation of HO• via the Fenton reaction under heat stress.

Zobrazit více v PubMed

Photosynth Res. 2007 Jun;92(3):369-87 PubMed

Nature. 2011 May 5;473(7345):55-60 PubMed

Photosynth Res. 2008 Oct-Dec;98(1-3):541-50 PubMed

Biochim Biophys Acta. 2008 Feb;1777(2):140-53 PubMed

Photosynth Res. 2008 Oct-Dec;98(1-3):589-608 PubMed

Philos Trans R Soc Lond B Biol Sci. 2008 Mar 27;363(1494):1211-8; discussion 1218-9 PubMed

Biophys J. 2003 Feb;84(2 Pt 1):1370-86 PubMed

Biochim Biophys Acta. 2007 Jun;1767(6):414-21 PubMed

J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):9-18 PubMed

Biochemistry. 2011 Jul 26;50(29):6312-5 PubMed

Photosynth Res. 1988 Jun;16(3):261-76 PubMed

Chemphyschem. 2010 Apr 26;11(6):1160-71 PubMed

FEBS Lett. 2000 May 4;473(1):58-62 PubMed

Photosynth Res. 2008 Oct-Dec;98(1-3):551-64 PubMed

Plant Physiol. 2006 Jun;141(2):391-6 PubMed

Nat Struct Mol Biol. 2009 Mar;16(3):334-42 PubMed

J Biol Chem. 2006 Aug 4;281(31):21660-21669 PubMed

Structure. 2009 Sep 9;17(9):1223-34 PubMed

Science. 2004 Mar 19;303(5665):1831-8 PubMed

Anal Biochem. 1997 Nov 15;253(2):162-8 PubMed

J Biol Chem. 2008 Oct 17;283(42):28380-91 PubMed

J Photochem Photobiol B. 2011 Jul-Aug;104(1-2):35-43 PubMed

J Struct Biol. 2007 Aug;159(2):228-37 PubMed

J Exp Bot. 2005 Jan;56(411):337-46 PubMed

Biochim Biophys Acta. 2006 Mar;1757(3):198-205 PubMed

Proc Natl Acad Sci U S A. 2009 May 26;106(21):8567-72 PubMed

Biochemistry. 1989 Aug 8;28(16):6686-95 PubMed

Biochemistry. 1999 May 18;38(20):6604-13 PubMed

Biochemistry. 2006 Feb 21;45(7):2063-71 PubMed

Biochemistry. 2006 Dec 5;45(48):14523-32 PubMed

Photosynth Res. 2007 Jul-Sep;93(1-3):111-21 PubMed

Biochim Biophys Acta. 2009 Oct;1787(10):1151-60 PubMed

Photosynth Res. 2008 Oct-Dec;98(1-3):503-22 PubMed

J Photochem Photobiol B. 1996 Jul;34(2-3):149-57 PubMed

Biochim Biophys Acta. 2007 Jun;1767(6):838-46 PubMed

Photosynth Res. 2005 Jun;84(1-3):231-7 PubMed

Trends Biochem Sci. 1989 Jun;14(6):227-32 PubMed

Photosynth Res. 2008 Oct-Dec;98(1-3):349-63 PubMed

Biochim Biophys Acta. 2007 Jun;1767(6):854-9 PubMed

Biochim Biophys Acta. 2012 Jan;1817(1):218-31 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace