Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.
Reactive oxygen species play a key role in cellular homeostasis and redox signaling at physiological levels, where excessive production affects the function and integrity of macromolecules, specifically proteins. Therefore, it is important to define radical-mediated proteotoxic stress in macrophages and identify target protein to prevent tissue dysfunction. A well employed, THP-1 cell line was utilized as in vitro model to study immune response and herein we employ immuno-spin trapping technique to investigate radical-mediated protein oxidation in macrophages. Hydroxyl radical formation along macrophage differentiation was confirmed by electron paramagnetic resonance along with confocal laser scanning microscopy using hydroxyphenyl fluorescein. Lipid peroxidation product, malondialdehyde, generated under experimental conditions as detected using swallow-tailed perylene derivative fluorescence observed by confocal laser scanning microscopy and high-performance liquid chromatography, respectively. The results obtained from this study warrant further corroboration and study of specific proteins involved in the macrophage activation and their role in inflammations.
Electron paramagnetic resonance (EPR) spectroscopy represents an established tool to study properties of microenvironments, e.g. to investigate the structure and dynamics of biological and artificial membranes. In this study, the partitioning of the spin probe 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in ex vivo human abdominal and breast skin, ex vivo porcine abdominal and ear skin as well as normal and inflammatory in vitro skin equivalents was investigated by EPR spectroscopy. Furthermore, the stratum corneum (SC) lipid composition (as determined by high-performance thin-layer chromatography), SC lipid chain order (probed by infrared spectroscopy) and the SC thickness (investigated by histology) were determined in the skin models. X-band EPR measurements have shown that TEMPO partitions in the lipophilic and hydrophilic microenvironment in varying ratios in different ex vivo and in vitro skin models. Ex vivo human abdominal skin exhibited the highest amount of TEMPO in the lipophilic microenvironment. In contrast, the lowest amount of TEMPO in the lipophilic microenvironment was determined in ex vivo human breast skin and the inflammatory in vitro skin equivalents. Individual EPR spectra of epidermis including SC and dermis indicated that the lipophilic microenvironment of TEMPO mainly corresponds to the most lipophilic part of the epidermis, the SC. The amount of TEMPO in the lipophilic microenvironment was independent of the SC lipid composition and the SC lipid chain order but correlated with the SC thickness. In conclusion, EPR spectroscopy could be a novel technique to determine differences in the SC thickness, thus suitably complementing existing methods.
- MeSH
- břicho MeSH
- buněčné mikroprostředí MeSH
- chromatografie na tenké vrstvě MeSH
- cyklické N-oxidy chemie MeSH
- dospělí MeSH
- elektronová paramagnetická rezonance MeSH
- epidermis chemie MeSH
- kůže chemie cytologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipidy chemie MeSH
- mladý dospělý MeSH
- prasata MeSH
- prsy MeSH
- senioři MeSH
- spektrofotometrie infračervená MeSH
- spinové značení MeSH
- tloušťka kožní řasy MeSH
- zevní ucho MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Staphylococcus aureus uses IsdG and IsdI to convert heme into a mixture of staphylobilin isomers, 15-oxo-β-bilirubin and 5-oxo-δ-bilirubin, formaldehyde, and iron. The highly ruffled heme found in the heme-IsdI and IsdG complexes has been proposed to be responsible for the unique heme degradation products. We employed resonance Raman (RR) and electron paramagnetic resonance (EPR) spectroscopies to examine the coordination and electronic structures of heme bound to IsdG and IsdI. Heme complexed to IsdG and IsdI is coordinated by a neutral histidine. The trans ligand is hydroxide in the ferric alkaline form of both proteins. In the ferric neutral form at pH 6.0, heme is six-coordinated with water as the sixth ligand for IsdG and is in the mixture of the five-coordinated and six-coordinated species for IsdI. In the ferrous CO-bound form, CO is strongly hydrogen bonded with a distal residue. The marker lines, ν2 and ν3, appear at frequencies that are distinct from other proteins having planar hemes. The EPR spectra for the ferric hydroxide and cyanide states might be explained by assuming the thermal mixing of the d-electron configurations, (dxy)2(dxz,dyz)3 and (dxz,dyz)4(dxy)1. The fraction for the latter becomes larger for the ferric cyanide form. In the ferric neutral state at pH 6.0, the quantum mechanical mixing of the high and intermediate spin configurations might explain the peculiar frequencies of ν2 and ν3 in the RR spectra. The heme ruffling imposed by IsdG and IsdI gives rise to unique electronic structures of heme, which are expected to modulate the first and subsequent steps of the heme oxygenation.
- MeSH
- bakteriální proteiny chemie MeSH
- elektronová paramagnetická rezonance MeSH
- hem chemie MeSH
- lidé MeSH
- oxid uhelnatý chemie MeSH
- oxygenasy se smíšenou funkcí chemie MeSH
- oxygenasy chemie MeSH
- Ramanova spektroskopie MeSH
- stafylokokové infekce mikrobiologie MeSH
- Staphylococcus aureus chemie MeSH
- vodíková vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This work presents an overview of the applications of retrospective dosimetry techniques in case of incorporation of radionuclides. The fact that internal exposures are characterized by a spatially inhomogeneous irradiation of the body, which is potentially prolonged over large periods and variable over time, is particularly problematic for biological and electron paramagnetic resonance (EPR) dosimetry methods when compared with external exposures. The paper gives initially specific information about internal dosimetry methods, the most common cytogenetic techniques used in biological dosimetry and EPR dosimetry applied to tooth enamel. Based on real-case scenarios, dose estimates obtained from bioassay data as well as with biological and/or EPR dosimetry are compared and critically discussed. In most of the scenarios presented, concomitant external exposures were responsible for the greater portion of the received dose. As no assay is available which can discriminate between radiation of different types and different LETs on the basis of the type of damage induced, it is not possible to infer from these studies specific conclusions valid for incorporated radionuclides alone. The biological dosimetry assays and EPR techniques proved to be most applicable in cases when the radionuclides are almost homogeneously distributed in the body. No compelling evidence was obtained in other cases of extremely inhomogeneous distribution. Retrospective dosimetry needs to be optimized and further developed in order to be able to deal with real exposure cases, where a mixture of both external and internal exposures will be encountered most of the times.
Two novel coordination compounds containing heterocyclic bidentate N,N-donor ligand 2-(furan-2-yl)-5-(pyridin-2-yl)-1,3,4-oxadiazole (fpo) were synthesized. A general formula for compounds originating from perchlorates of iron, cobalt, and fpo can be written as: [M(fpo)2(H2O)2](ClO4)2 (M = Fe(II) for (1) Co(II) for (2)). The characterization of compounds was performed by general physico-chemical methods-elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) in case of organics, and single crystal X-ray diffraction (sXRD). Moreover, magneto-chemical properties were studied employing measurements in static field (DC) for 1 and X-band EPR (Electron paramagnetic resonance), direct current (DC), and alternating current (AC) magnetic measurements in case of 2. The analysis of DC magnetic properties revealed a high spin arrangement in 1, significant rhombicity for both complexes, and large magnetic anisotropy in 2 (D = -21.2 cm-1). Moreover, 2 showed field-induced slow relaxation of the magnetization (Ueff = 65.3 K). EPR spectroscopy and ab initio calculations (CASSCF/NEVPT2) confirmed the presence of easy axis anisotropy and the importance of the second coordination sphere.
- MeSH
- anizotropie MeSH
- elektronová paramagnetická rezonance MeSH
- furany chemie MeSH
- kobalt chemie MeSH
- komplexní sloučeniny chemie MeSH
- krystalografie rentgenová MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární modely MeSH
- oxadiazoly chemie MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- spektroskopie Mossbauerova MeSH
- železnaté sloučeniny chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
Biomolecule (lipid and protein) oxidation products formed in plant cells exposed to photooxidative stress play a crucial role in the retrograde signaling and oxidative damage. The oxidation of biomolecules initiated by reactive oxygen species is associated with formation of organic (alkyl, peroxyl and alkoxyl) radicals. Currently, there is no selective and sensitive technique available for the detection of organic radicals in plant cells. Here, based on the analogy with animal cells, immuno-spin trapping using spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was used to image organic radicals in Arabidopsis leaves exposed to high light. Using antibody raised against the DMPO nitrone adduct conjugated with the fluorescein isothiocyanate, organic radicals were imaged by confocal laser scanning microscopy. Organic radicals are formed predominantly in the chloroplasts located at the periphery of the cells and distributed uniformly throughout the grana stack. Characterization of protein radicals by standard immunological techniques using anti-DMPO antibody shows protein bands with apparent molecular weights of 32 and 34 kDa assigned to D1 and D2 proteins and two protein bands below the D1/D2 band with apparent molecular weights of 23 and 18 kDa and four protein bands above the D1/D2 band with apparent molecular weights of 41, 43, 55 and 68 kDa. In summary, imaging of organic radicals by immuno-spin trapping represents selective and sensitive technique for the detection of organic radicals that might help to clarify mechanistic aspects on the role of organic radicals in the retrograde signaling and oxidative damage in plant cell.
- MeSH
- cyklické N-oxidy chemie MeSH
- elektronová paramagnetická rezonance MeSH
- lipidy chemie izolace a purifikace MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku chemie MeSH
- peroxidy chemie MeSH
- proteiny chemie MeSH
- reaktivní formy kyslíku chemie MeSH
- spin trapping * MeSH
- spinové značení MeSH
- volné radikály chemie izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- difuzní magnetická rezonance metody MeSH
- elektronová paramagnetická rezonance MeSH
- gliom * diagnostické zobrazování MeSH
- kontrastní látky MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- nádory mozku diagnostické zobrazování MeSH
- spinové značení MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- lidé MeSH
Cytochrome c (cyt c) is one of the most studied conjugated proteins due to its electron-transfer properties and ability to regulate the processes involved in homeostasis or apoptosis. Here we report an electrochemical strategy for investigating the electroactivity of cyt c and its analogs with a disrupted heme moiety, i.e. apocytochrome c (acyt c) and porphyrin cytochrome c (pcyt c). The electrochemical data are supplemented with low-temperature and spin-probe electron paramagnetic resonance (EPR) spectroscopy. The main contribution of this report is a complex evaluation of cyt c reduction and oxidation at the level of surface-localized amino acid residues and the heme moiety in a single electrochemical scan. The electrochemical pattern of cyt c is substantially different to both analogs acyt c and pcyt c, which could be applicable in further studies on the redox properties and structural stability of cytochromes and other hemeproteins.
The Arabidopsis vte1 mutant is devoid of tocopherol and plastochromanol (PC-8). When exposed to excess light energy, vte1 produced more singlet oxygen (1 O2 ) and suffered from extensive oxidative damage compared with the wild type. Here, we show that overexpressing the solanesyl diphosphate synthase 1 (SPS1) gene in vte1 induced a marked accumulation of total plastoquinone (PQ-9) and rendered the vte1 SPS1oex plants tolerant to photooxidative stress, indicating that PQ-9 can replace tocopherol and PC-8 in photoprotection. High total PQ-9 levels were associated with a noticeable decrease in 1 O2 production and higher levels of Hydroxyplastoquinone (PQ-C), a 1 O2 -specific PQ-9 oxidation product. The extra PQ-9 molecules in the vte1 SPS1oex plants were stored in the plastoglobules and the chloroplast envelopes, rather than in the thylakoid membranes, whereas PQ-C was found almost exclusively in the thylakoid membranes. Upon exposure of wild-type plants to high light, the thylakoid PQ-9 pool decreased, whereas the extrathylakoid pool remained unchanged. In vte1 and vte1 SPS1oex plants, the PQ-9 losses in high light were strongly amplified, affecting also the extrathylakoid pool, and PQ-C was found in high amounts in the thylakoids. We conclude that the thylakoid PQ-9 pool acts as a 1 O2 scavenger and is replenished from the extrathylakoid stock.
- MeSH
- alkyltransferasy a aryltransferasy metabolismus MeSH
- chlorofyl metabolismus MeSH
- chloroplasty metabolismus MeSH
- elektronová paramagnetická rezonance MeSH
- oxidační stres účinky záření MeSH
- peroxidace lipidů MeSH
- plastochinon metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- scavengery volných radikálů metabolismus MeSH
- singletový kyslík metabolismus MeSH
- světlo MeSH
- tylakoidy metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH