Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress

. 2016 ; 7 () : 1950. [epub] 20161226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28082998

The effect of various abiotic stresses on photosynthetic apparatus is inevitably associated with formation of harmful reactive oxygen species (ROS). In this review, recent progress on ROS production by photosystem II (PSII) as a response to high light and high temperature is overviewed. Under high light, ROS production is unavoidably associated with energy transfer and electron transport in PSII. Singlet oxygen is produced by the energy transfer form triplet chlorophyll to molecular oxygen formed by the intersystem crossing from singlet chlorophyll in the PSII antennae complex or the recombination of the charge separated radical pair in the PSII reaction center. Apart to triplet chlorophyll, triplet carbonyl formed by lipid peroxidation transfers energy to molecular oxygen forming singlet oxygen. On the PSII electron acceptor side, electron leakage to molecular oxygen forms superoxide anion radical which dismutes to hydrogen peroxide which is reduced by the non-heme iron to hydroxyl radical. On the PSII electron donor side, incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. Under high temperature, dark production of singlet oxygen results from lipid peroxidation initiated by lipoxygenase, whereas incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. The understanding of molecular basis for ROS production by PSII provides new insight into how plants survive under adverse environmental conditions.

Zobrazit více v PubMed

Allakhverdiev S. I., Kreslavski V. D., Klimov V. V., Los D. A., Carpentier R., Mohanty P. (2008). Heat stress: an overview of molecular responses in photosynthesis. Photosynth. Res. 98 541–550. 10.1007/s11120-008-9331-0 PubMed DOI

Ananyev G., Renger G., Wacker U., Klimov V. (1994). The photoproduction of superoxide radicals and the superoxide-dismutase activity of photosystem-II - the possible involvement of cytochrome B559. Photosynth. Res. 41 327–338. 10.1007/BF00019410 PubMed DOI

Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55 373–399. 10.1146/annurev.arplant.55.031903.141701 PubMed DOI

Arato A., Bondarava N., Krieger-Liszkay A. (2004). Production of reactive oxygen species in chloride- and calcium-depleted photosystem II and their involvement in photoinhibition. Biochim. Biophys. Acta 1608 171–180. 10.1016/j.bbabio.2003.12.003 PubMed DOI

Aro E. M., Virgin I., Andersson B. (1993). Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143 113–134. 10.1016/0005-2728(93)90134-2 PubMed DOI

Ballottari M., Mozzo M., Girardon J., Hienerwadel R., Bassi R. (2013). Chlorophyll triplet quenching and photoprotection in the higher plant monomeric antenna protein Lhcb5. J. Phys. Chem. B 117 11337–11348. 10.1021/jp402977y PubMed DOI

Barra M., Haumann M., Dau H. (2005). Specific loss of the extrinsic 18 Kda protein from Photosystem II upon heating to 47 degrees C causes inactivation of oxygen evolution likely due to Ca release from the Mn-complex. Photosynth. Res. 84 231–237. 10.1007/s11120-004-7158-x PubMed DOI

Borisova-Mubarakshina M. M., Ivanov B. N., Vetoshkina D. V., Lubimov V. Y., Fedorchuk T. P., Naydov I. A., et al. (2015). Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size. J. Exp. Bot. 66 7151–7164. 10.1093/jxb/erv410 PubMed DOI

Bradley R. L., Long K. M., Frasch W. D. (1991). The involvement of photosystem-ii-generated H2o2 in photoinhibition. FEBS Lett. 286 209–213. 10.1016/0014-5793(91)80975-9 PubMed DOI

Cardona T., Sedoud A., Cox N., Rutherford A. W. (2012). Charge separation in Photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta 1817 26–43. 10.1016/j.bbabio.2011.07.012 PubMed DOI

Chen L. B., Jia H. Y., Tian Q., Du L. B., Gao Y. L., Miao X. X., et al. (2012). Protecting effect of phosphorylation on oxidative damage of D1 protein by down-regulating the production of superoxide anion in photosystem II membranes under high light. Photosynth. Res. 112 141–148. 10.1007/s11120-012-9750-9 PubMed DOI

Cleland R. E., Grace S. C. (1999). Voltammetric detection of superoxide production by photosystem II. FEBS Lett. 457 348–352. 10.1016/S0014-5793(99)01067-4 PubMed DOI

Coleman W. J., Govindjee, Gutowsky H. S. (1988). The effect of chloride on the thermal inactivation of oxygen evolution. Photosynth. Res. 16 261–276. 10.1007/BF00028844 PubMed DOI

Cupellini L., Jurinovich S., Prandi I. G., Caprasecca S., Mennucci B. (2016). Photoprotection and triplet energy transfer in higher plants: the role of electronic and nuclear fluctuations. Phys. Chem. Chem. Phys. 18 11288–11296. 10.1039/C6CP01437B PubMed DOI

Dall’Osto L., Holt N. E., Kaligotla S., Fuciman M., Cazzaniga S., Carbonera D., et al. (2012). Zeaxanthin protects plant photosynthesis by modulating chlorophyll triplet yield in specific light-harvesting antenna subunits. J. Biol. Chem. 287 41820–41834. 10.1074/jbc.M112.405498 PubMed DOI PMC

Dall’Osto L., Lico C., Alric J., Giuliano G., Havaux M., Bassi R. (2006). Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol. 6:32 10.1186/1471-2229-6-32 PubMed DOI PMC

Dau H., Zaharieva I., Haumann M. (2012). Recent developments in research on water oxidation by photosystem II. Curr. Opin. Chem. Biol. 16 3–10. 10.1016/j.cbpa.2012.02.011 PubMed DOI

DeLano W. L. (2002). The PYMOL Molecular Graphics System. Software. Available at: http://www.pymol.org

Dexter D. L. (1953). A theory of sensitized luminescence in solids. J. Chem. Phys. 21 836–850. 10.1063/1.1699044 DOI

Dietz K. J., Turkan I., Krieger-Liszkay A. (2016). Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 171 1541–1550. 10.1104/pp.16.00375 PubMed DOI PMC

Domonkos I., Kis M., Gombos Z., Ughy B. (2013). Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid Res. 52 539–561. 10.1016/j.plipres.2013.07.001 PubMed DOI

Edelman M., Mattoo A. K. (2008). D1-protein dynamics in photosystem II: the lingering enigma. Photosynth. Res. 98 609–620. 10.1007/s11120-008-9342-x PubMed DOI

Enami I., Kitamura M., Tomo T., Isokawa Y., Ohta H., Katoh S. (1994). Is the primary cause of thermal inactivation of oxygen evolution in spinach PS-ii membranes release of the extrinsic 33 kda protein or of MN. Biochim. Biophys. Acta 1186 52–58. 10.1016/0005-2728(94)90134-1 DOI

Erickson E., Wakao S., Niyogi K. K. (2015). Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 82 449–465. 10.1111/tpj.12825 PubMed DOI

Fine P. L., Frasch W. D. (1992). The oxygen-evolving complex requires chloride to prevent hydrogen-peroxide formation. Biochemistry 31 12204–12210. 10.1021/bi00163a033 PubMed DOI

Fischer B. B., Hideg E., Krieger-Liszkay A. (2013). Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid. Redox Signal. 18 2145–2162. 10.1089/ars.2012.5124 PubMed DOI

Fischer B. B., Ledford H. K., Wakao S., Huang S. G., Casero D., Pellegrini M., et al. (2012). Singlet oxygen resistant 1 links reactive electrophile signaling to singlet oxygen acclimation in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U.S.A. 109 E1302–E1311. 10.1073/pnas.1116843109 PubMed DOI PMC

Foyer C. H., Noctor G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11 861–905. 10.1089/ars.2008.2177 PubMed DOI

Frankel L. K., Sallans L., Limbach P. A., Bricker T. M. (2012). Identification of oxidized amino acid residues in the vicinity of the Mn4CaO5 cluster of Photosystem II: implications for the identification of oxygen channels within the photosystem. Biochemistry 51 6371–6377. 10.1021/bi300650n PubMed DOI PMC

Frankel L. K., Sallans L., Limbach P. A., Bricker T. M. (2013). Oxidized amino acid residues in the vicinity of Q(A) and Pheo(D1) of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species. PLoS ONE 8:e58042 10.1371/journal.pone.0058042 PubMed DOI PMC

Gollan P. J., Tikkanen M., Aro E.-M. (2015). Photosynthetic light reactions: integral to chloroplast retrograde signalling. Curr. Opin. Plant Biol. 27 180–191. 10.1016/j.pbi.2015.07.006 PubMed DOI

Havaux M. (2014). Carotenoid oxidation products as stress signals in plants. Plant J. 79 597–606. 10.1111/tpj.12386 PubMed DOI

Havaux M., Niyogi K. K. (1999). The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. U.S.A. 96 8762–8767. 10.1073/pnas.96.15.8762 PubMed DOI PMC

Havaux M., Triantaphylides C., Genty B. (2006). Autoluminescence imaging: a non-invasive tool for mapping oxidative stress. Trends Plant Sci. 11 480–484. 10.1016/j.tplants.2006.08.001 PubMed DOI

Jarvi S., Suorsa M., Aro E. M. (2015). Photosystem II repair in plant chloroplasts - regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim. Biophys. Acta 1847 900–909. 10.1016/j.bbabio.2015.01.006 PubMed DOI

Karpinski S., Szechynska-Hebda M., Wituszynska W., Burdiak P. (2013). Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant Cell Environ. 36 736–744. 10.1111/pce.12018 PubMed DOI

Khorobrykh S. A., Karonen M., Tyystjarvi E. (2015). Experimental evidence suggesting that H2O2 is produced within the thylakoid membrane in a reaction between plastoquinol and singlet oxygen. FEBS Lett. 589 779–786. 10.1016/j.febslet.2015.02.011 PubMed DOI

Komenda J., Kuvikovi S., Lupinkova L., Masojidek J. (2006). “Biogenesis and structural dynamics of the photosystem II complex,” in Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors, and Biodevices eds Giardi M. T., Piletska E. V. (New York, NY: Springer; ).

Komenda J., Sobotka R., Nixon P. J. (2012). Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 15 245–251. 10.1016/j.pbi.2012.01.017 PubMed DOI

Krieger-Liszkay A. (2005). Singlet oxygen production in photosynthesis. J. Exp. Bot. 56 337–346. 10.1093/jxb/erh237 PubMed DOI

Laloi C., Havaux M. (2015). Key players of singlet oxygen-induced cell death in plants. Front. Plant Sci. 6:39 10.3389/fpls.2015.00039 PubMed DOI PMC

Laloi C., Stachowiak M., Pers-Kamczyc E., Warzych E., Murgia I., Apel K. (2007). Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104 672–677. 10.1073/pnas.0609063103 PubMed DOI PMC

Lambreva M. D., Russo D., Polticelli F., Scognamiglio V., Antonacci A., Zobnina V., et al. (2014). Structure/function/dynamics of photosystem II plastoquinone binding sites. Curr. Protein Pept. Sci. 15 285–295. 10.2174/1389203715666140327104802 PubMed DOI PMC

Lee K. P., Kim C., Landgraf F., Apel K. (2007). EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104 10270–10275. 10.1073/pnas.0702061104 PubMed DOI PMC

Liu Z. F., Yan H. C., Wang K. B., Kuang T. Y., Zhang J. P., Gui L. L., et al. (2004). Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428 287–292. 10.1038/nature02373 PubMed DOI

Lupinkova L., Komenda J. (2004). Oxidative modifications of the Photosystem II D1 protein by reactive oxygen species: from isolated protein to cyanobacterial cells. Photochem. Photobiol. 79 152–162. 10.1562/0031-8655nyr(2004)079<0152:OMOTPI>2.0.CO;2 PubMed DOI

Marutani Y., Yamauchi Y., Kimura Y., Mizutani M., Sugimoto Y. (2012). Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta 236 753–761. 10.1007/s00425-012-1647-5 PubMed DOI

Mathur S., Agrawal D., Jajoo A. (2014). Photosynthesis: response to high temperature stress. J. Photochem. Photobiol. B Biol. 137 116–126. 10.1016/j.jphotobiol.2014.01.010 PubMed DOI

Mulo P., Sakurai I., Aro E.-M. (2012). Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim. Biophys. Acta 1817 247–257. 10.1016/j.bbabio.2011.04.011 PubMed DOI

Najafpour M. M., Renger G., Hołyńska M., Moghaddam A. N., Aro E.-M., Carpentier R., et al. (2016). Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem. Rev. 116 2886–2936. 10.1021/acs.chemrev.5b00340 PubMed DOI

Nash D., Miyao M., Murata N. (1985). Heat inactivation of oxygen evolution in photosystem-II particles and its acceleration by chloride depletion and exogenous manganese. Biochim. Biophys. Acta 807 127–133. 10.1016/0005-2728(85)90115-X DOI

Nelson N., Junge W. (2015). Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84 659–683. 10.1146/annurev-biochem-092914-041942 PubMed DOI

Nishiyama Y., Allakhverdiev S. I., Murata N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim. Biophys. Acta 1757 742–749. 10.1016/j.bbabio.2006.05.013 PubMed DOI

Noguchi T., Tomo T., Kato C. (2001). Triplet formation on a monomeric chlorophyll in the photosystem II reaction center as studied by time-resolved infrared spectroscopy. Biochemistry 40 2176–2185. 10.1021/bi0019848 PubMed DOI

op den Camp R. G. L., Przybyla D., Ochsenbein C., Laloi C., Kim C. H., Danon A., et al. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in arabidopsis. Plant Cell 15 2320–2332. 10.1105/tpc.014662 PubMed DOI PMC

Pinnola A., Dall’osto L., Gerotto C., Morosinotto T., Bassi R., Alboresi A. (2013). Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens. Plant Cell 25 3519–3534. 10.1105/tpc.113.114538 PubMed DOI PMC

Pospíšil P. (2009). Production of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1787 1151–1160. 10.1016/j.bbabio.2009.05.005 PubMed DOI

Pospíšil P. (2011). Enzymatic function of cytochrome b(559) in photosystem II. J. Photochem. Photobiol. B Biol. 104 341–347. 10.1016/j.jphotobiol.2011.02.013 PubMed DOI

Pospíšil P. (2012). Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta 1817 218–231. 10.1016/j.bbabio.2011.05.017 PubMed DOI

Pospíšil P., Arato A., Krieger-Liszkay A., Rutherford A. W. (2004). Hydroxyl radical generation by Photosystem II. Biochemistry 43 6783–6792. 10.1021/bi036219i PubMed DOI

Pospíšil P., Haumann M., Dittmer J., Sole V. A., Dau H. (2003). Stepwise transition of the tetra-manganese complex of photosystem II to a binuclear Mn-2(mu-O)(2) complex in response to a temperature jump: a time-resolved structural investigation employing X-ray absorption spectroscopy. Biophys. J. 84 1370–1386. 10.1016/S0006-3495(03)74952-2 PubMed DOI PMC

Pospíšil P., Prasad A. (2014). Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. J. Photochem. Photobiol. B Biol. 137 39–48. 10.1016/j.jphotobiol.2014.04.025 PubMed DOI

Pospíšil P., Snyrychova I., Kruk J., Strzalka K., Naus J. (2006). Evidence that cytochrome b(559) is involved in superoxide production in photosystem II: effect of synthetic short-chain plastoquinones in a cytochrome b(559) tobacco mutant. Biochem. J. 397 321–327. 10.1042/BJ20060068 PubMed DOI PMC

Pospíšil P., Šnyrychová I., Nauš J. (2007). Dark production of reactive oxygen species in photosystem II membrane particles at elevated temperature: EPR spin-trapping study. Biochim. Biophys. Acta 1767 854–859. 10.1016/j.bbabio.2007.02.011 PubMed DOI

Pospíšil P., Tyystjarvi E. (1999). Molecular mechanism of high-temperature-induced inhibition of acceptor side of Photosystem II. Photosynth. Res. 62 55–66. 10.1023/A:1006369009170 DOI

Poudyal R. S., Nath K., Zulfugarov I. S., Lee C. H. (2016). Production of superoxide from photosystem II-light harvesting complex II supercomplex in STN8 kinase knock-out rice mutants under photoinhibitory illumination. J. Photochem. Photobiol. B 162 240–247. 10.1016/j.jphotobiol.2016.06.050 PubMed DOI

Prasad A., Ferretti U., Sedlářová M., Pospíšil P. (2016). Singlet oxygen production in Chlamydomonas reinhardtii under heat stress. Sci. Rep. 6 20094 10.1038/srep20094 PubMed DOI PMC

Prasad A., Kumar A., Suzuki M., Kikuchi H., Sugai T., Kobayashi M., et al. (2015). Detection of hydrogen peroxide in Photosystem II (PSII) using catalytic amperometric biosensor. Front. Plant Sci. 6:862 10.3389/fpls.2015.00862 PubMed DOI PMC

Przybyla D., Gobel C., Imboden A., Hamberg M., Feussner I., Apel K. (2008). Enzymatic, but not non-enzymatic, O-1(2)-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana. Plant J. 54 236–248. 10.1111/j.1365-313X.2008.03409.x PubMed DOI

Ramel F., Birtic S., Ginies C., Soubigou-Taconnat L., Triantaphylides C., Havaux M. (2012). Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci. U.S.A. 109 5535–5540. 10.1073/pnas.1115982109 PubMed DOI PMC

Ramel F., Ksas B., Akkari E., Mialoundama A. S., Monnet F., Krieger-Liszkay A., et al. (2013b). Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen. Plant Cell 25 1445–1462. 10.1105/tpc.113.109827 PubMed DOI PMC

Ramel F., Ksas B., Havaux M. (2013c). Jasmonate: a decision maker between cell death and acclimation in the response of plants to singlet oxygen. Plant Signal. Behav. 8 e26655 10.4161/psb.26655 PubMed DOI PMC

Ramel F., Mialoundama A. S., Havaux M. (2013a). Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. J. Exp. Bot. 64 799–805. 10.1093/jxb/ers223 PubMed DOI

Ruban A. V., Johnson M. P., Duffy C. D. P. (2012). The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta 1817 167–181. 10.1016/j.bbabio.2011.04.007 PubMed DOI

Sharma J., Panico M., Shipton C. A., Nilsson F., Morris H. R., Barber J. (1997). Primary structure characterization of the photosystem II D1 and D2 subunits. J. Biol. Chem. 272 33158–33166. 10.1074/jbc.272.52.33158 PubMed DOI

Shipton C. A., Barber J. (1994). In-vivo and in-vitro photoinhibition reactions generate similar degradation fragments of D1 and D2 photosystem-ii reaction-center proteins. Eur. J. Biochem. 220 801–808. 10.1111/j.1432-1033.1994.tb18682.x PubMed DOI

Shumbe L., Chevalier A., Legeret B., Taconnat L., Monnet F., Havaux M. (2016). Singlet oxygen-induced cell death in Arabidopsis under high-light stress is controlled by OXI1 kinase. Plant Physiol. 170 1757–1771. PubMed PMC

Sinha R. K., Komenda J., Knoppova J., Sedlářová M., Pospíšil P. (2012). Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp PCC 6803. Plant Cell Environ. 35 806–818. 10.1111/j.1365-3040.2011.02454.x PubMed DOI

Suga M., Akita F., Hirata K., Ueno G., Murakami H., Nakajima Y., et al. (2015). Native structure of photosystem II at 1.95 angstrom resolution viewed by femtosecond X-ray pulses. Nature 517 99–103. 10.1038/nature13991 PubMed DOI

Sun A. Z., Guo F. Q. (2016). Chloroplast retrograde regulation of heat stress responses in plants. Front. Plant Sci. 7:398 10.3389/fpls.2016.00398 PubMed DOI PMC

Telfer A. (2014). Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of beta-carotene. Plant Cell Physiol. 55 1216–1223. 10.1093/pcp/pcu040 PubMed DOI PMC

Thompson L. K., Blaylock R., Sturtevant J. M., Brudvig G. W. (1989). Molecular-basis of the heat denaturation of photosystem-II. Biochemistry 28 6686–6695. 10.1021/bi00442a023 PubMed DOI

Tikkanen M., Gollan P. J., Mekala N. R., Isojarvi J., Aro E. M. (2014). Light-harvesting mutants show differential gene expression upon shift to high light as a consequence of photosynthetic redox and reactive oxygen species metabolism. Philos. Trans. R. Soc. B Biol. Sci. 369 20130229 10.1098/rstb.2013.0229 PubMed DOI PMC

Tiwari A., Pospíšil P. (2009). Superoxide oxidase and reductase activity of cytochrome b(559) in photosystem II. Biochim. Biophys. Acta 1787 985–994. 10.1016/j.bbabio.2009.03.017 PubMed DOI

Triantaphylides C., Havaux M. (2009). Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci. 14 219–228. 10.1016/j.tplants.2009.01.008 PubMed DOI

Triantaphylides C., Krischke M., Hoeberichts F. A., Ksas B., Gresser G., Havaux M., et al. (2008). Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148 960–968. 10.1104/pp.108.125690 PubMed DOI PMC

Umena Y., Kawakami K., Shen J. R., Kamiya N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A. Nature 473 55–60. 10.1038/nature09913 PubMed DOI

van Amerongen H., Croce R. (2013). Light harvesting in photosystem II. Photosynth. Res. 116 251–263. 10.1007/s11120-013-9824-3 PubMed DOI PMC

Vinyard D. J., Ananyev G. M., Dismukes G. C. (2013). Photosystem II: the reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82 577–606. 10.1146/annurev-biochem-070511-100425 PubMed DOI

Vogt L., Vinyard D. J., Khan S., Brudvig G. W. (2015). Oxygen-evolving complex of Photosystem II: an analysis of second-shell residues and hydrogen-bonding networks. Curr. Opin. Chem. Biol. 25 152–158. 10.1016/j.cbpa.2014.12.040 PubMed DOI

Volkov R. A., Panchuk I. I, Mullineaux P. M., Schoffl F. (2006). Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61 733–746. 10.1007/s11103-006-0045-4 PubMed DOI

von Sydow L., Schwenkert S., Meurer J., Funk C., Mamedov F., Schröder W. P. (2016). The PsbY protein of Arabidopsis PhotosystemII is important for the redox control of cytochrome b559. Biochim. Biophys. Acta 1857 1524–1533. 10.1016/j.bbabio.2016.05.004 PubMed DOI

Wang L. S., Kim C., Xu X., Piskurewicz U., Dogra V., Singh S., et al. (2016). Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc. Natl. Acad. Sci. U.S.A. 113 E3792–E3800. 10.1073/pnas.1603562113 PubMed DOI PMC

Wei X., Su X., Cao P., Liu X.-Y., Chang W., Li M., et al. (2016). Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534 69–74. 10.1038/nature18020 PubMed DOI

Yadav D. K., Pospíšil P. (2012a). Evidence on the formation of singlet oxygen in the donor side photoinhibition of photosystem II: EPR spin-trapping study. PLoS ONE 7:e45883 10.1371/journal.pone.0045883 PubMed DOI PMC

Yadav D. K., Pospíšil P. (2012b). Role of chloride ion in hydroxyl radical production in photosystem II under heat stress: electron paramagnetic resonance spin-trapping study. J. Bioenerg. Biomembr. 44 365–372. 10.1007/s10863-012-9433-4 PubMed DOI

Yadav D. K., Prasad A., Kruk J., Pospíšil P. (2014). Evidence for the involvement of loosely bound plastosemiquinones in superoxide anion radical production in photosystem II. PLoS ONE 9:e115466 10.1371/journal.pone.0115466 PubMed DOI PMC

Yamamoto Y., Aminaka R., Yoshioka M., Khatoon M., Komayama K., Takenaka D., et al. (2008). Quality control of photosystem II: impact of light and heat stresses. Photosynth. Res. 98 589–608. 10.1007/s11120-008-9372-4 PubMed DOI

Yamashita A., Nijo N., Pospíšil P., Morita N., Takenaka D., Aminaka R., et al. (2008). Quality control of photosystem II - Reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J. Biol. Chem. 283 28380–28391. 10.1074/jbc.M710465200 PubMed DOI PMC

Yamauchi Y., Furutera A., Seki K., Toyoda Y., Tanaka K., Sugimoto Y. (2008). Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol. Biochem. 46 786–793. 10.1016/j.plaphy.2008.04.018 PubMed DOI

Yoshioka M., Uchida S., Mori H., Komayama K., Ohira S., Morita N., et al. (2006). Quality control of photosystem II. Cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. J. Biol. Chem. 281 21660–21669. 10.1074/jbc.M602896200 PubMed DOI

Zulfugarov I. S., Tovuu A., Eu Y.-J., Dogsom B., Poudyal R. S., Nath K.et al. (2014). Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC Plant Biol. 14:242 10.1186/s12870-014-0242-2 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis

. 2023 Aug 04 ; 14 (1) : 4681. [epub] 20230804

Genomic capacities for Reactive Oxygen Species metabolism across marine phytoplankton

. 2023 ; 18 (4) : e0284580. [epub] 20230425

Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light

. 2022 Oct 18 ; 73 (18) : 6380-6393.

Reactive oxygen species in photosystem II: relevance for oxidative signaling

. 2022 Jun ; 152 (3) : 245-260. [epub] 20220528

Arabidopsis Iron Superoxide Dismutase FSD1 Protects Against Methyl Viologen-Induced Oxidative Stress in a Copper-Dependent Manner

. 2022 ; 13 () : 823561. [epub] 20220311

Photosynthesis dynamics and regulation sensed in the frequency domain

. 2021 Oct 05 ; 187 (2) : 646-661.

Tocopherol controls D1 amino acid oxidation by oxygen radicals in Photosystem II

Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants

. 2020 ; 11 () : 618835. [epub] 20210201

On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments

. 2019 Apr 17 ; 8 (4) : . [epub] 20190417

Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms

. 2018 Sep 12 ; 8 (1) : 13685. [epub] 20180912

Janus-Faced Nature of Light in the Cold Acclimation Processes of Maize

. 2018 ; 9 () : 850. [epub] 20180619

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace