Subtropical lichens from the Afromontane can display rapid photosynthetic acclimation to simulated climate change
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40270910
PubMed Central
PMC12012427
DOI
10.32615/ps.2025.005
PII: PS63064
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll fluorescence, photobionts, reactive oxygen species, stress,
- MeSH
- aklimatizace * fyziologie MeSH
- fotosyntéza * fyziologie MeSH
- klimatické změny * MeSH
- lišejníky * fyziologie účinky záření MeSH
- transport elektronů MeSH
- tropické klima MeSH
- Publikační typ
- časopisecké články MeSH
Afromontane forests are an important part of the KwaZulu Natal region of southern Africa, having a distinctive flora with a high proportion of endemic species, and lichens are keystone members. Unlike other continental areas, KwaZulu Natal climate change is predicted to increase rainfall and cloudiness. In the present study, hydrated Afromontane lichens from both exposed and shaded microhabitats were given either constant [100 µmol(photon) m-2 s-1] or fluctuating [0, 200, 0 µmol(photon) m-2 s-1] light for 8 h a day for 3 d and changes monitored in nonphotochemical quenching (NPQ) and rates of photosynthetic electron transport. In sun but not shade collections, NPQ strongly increased following treatment with constant and fluctuating light. It seems likely that CO2 fixation may be reduced in moist thalli, and the increase in NPQ may reduce ROS formation during exposure to light while hydrated. Sun lichens can readily modify their NPQ in response to increased cloudiness and rainfall expected in KwaZulu Natal.
Zobrazit více v PubMed
Abbass K., Qasim M.Z., Song H.M. et al..: A review of the global climate change impacts, adaptation, and sustainable mitigation measures. – Environ. Sci. Pollut. Res. 29: 42539-42559, 2022. 10.1007/s11356-022-19718-6 PubMed DOI PMC
Beckett R.P., Minibayeva F.V., Mkhize K.W.G.: Shade lichens are characterized by rapid relaxation of non-photochemical quenching on transition to darkness. – Lichenologist 53: 409-414, 2021b. 10.1017/S0024282921000323 DOI
Beckett R.P., Minibayeva F.V., Solhaug K.A., Roach T.: Photoprotection in lichens: adaptations of photobionts to high light. – Lichenologist 53: 21-33, 2021a. 10.1017/S0024282920000535 DOI
Beckett R.P., Roach T., Minibayeva F.V., Werth S.: Alternative electron transport pathways contribute to tolerance to high light stress in lichenized algae. – Physiol. Plantarum 175: e13904, 2023. 10.1111/ppl.13904 PubMed DOI
Bilger W., Schreiber U., Bock M.: Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. – Oecologia 102: 425-432, 1995. 10.1007/BF00341354 PubMed DOI
Cowan I.R., Lange O.L., Green T.G.A.: Carbon dioxide exchange in lichens: determination of transport and carboxylation characteristics. – Planta 187: 282-294, 1992. 10.1007/BF00201952 PubMed DOI
Cung K., Galvan L., Osborne H., Spiegel S.: The effects of sunlight and slope on the lichen community of the Sweeney Granite Mountains reserve. – CEC Res. 5: 1-7, 2021. 10.21973/N3066N DOI
Eilers P.H.C., Peeters J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. – Ecol. Model. 42: 199-215, 1988. 10.1016/0304-3800(88)90057-9 DOI
Galloway D.J.: Flora of New Zealand: Lichens. Pp. 662. P.D. Hasselberg, New Zealand Government Printer, Wellington: 1985.
Gauslaa Y., Goward T.: Melanic pigments and canopy-specific elemental concentration shape growth rates of the lichen Lobaria pulmonaria in unmanaged mixed forest. – Fungal Ecol. 47: 100984, 2020. 10.1016/j.funeco.2020.100984 DOI
Greer D.H.: Sunlight and plant production. – In: Plants in Action. Australian Society of Plant Scientists, 2024. Available at: https://web.archive.org/web/20180319015450/http://plantsinaction.science.uq.edu.au/content/chapter-12-sunlight-and-plant-production.
Hart N.C.G., Washington R., Reason C.J.C.: On the likelihood of tropical–extratropical cloud bands in the south Indian convergence zone during ENSO events. – J. Climate 31: 2797-2817, 2018. 10.1175/JCLI-D-17-0221.1 DOI
Kalaji M.H., Goltsev V.N., Żuk-Gołaszewska K. et al..: Chlorophyll Fluorescence: Understanding Crop Performance – Basics and Applications. Pp. 244. CRC Press, Boca Raton: 2017. 10.1201/9781315153605 DOI
Lange O.L., Green T.G.A.: High thallus water content severely limits photosynthetic carbon gain of central European epilithic lichens under natural conditions. – Oecologia 108: 13-20, 1996. 10.1007/BF00333209 PubMed DOI
Lange O.L.: Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation II. Diel and seasonal patterns of net photosynthesis and respiration. – Flora 198: 55-70, 2003. 10.1016/S0367-2530(04)70052-3 DOI
Leisner J.M.R., Green T.G.A., Lange O.L.: Photobiont activity of a temperate crustose lichen: long-term chlorophyll fluorescence and CO2 exchange measurements in the field. – Symbiosis 23: 165-182, 1997.
Liu H., Koren I., Altaratz O., Chekroun M.D.: Opposing trends of cloud coverage over land and ocean under global warming. – Atmos. Chem. Phys. 23: 6559-6569, 2023. 10.5194/acp-23-6559-2023 DOI
Mallen-Cooper M., Rodríguez-Caballero E., Eldridge D.J. et al..: Towards an understanding of future range shifts in lichens and mosses under climate change. – J. Biogeogr. 50: 406-417, 2023. 10.1111/jbi.14542 DOI
Maphangwa K.W., Musil C.F., Raitt L., Zedda L.: Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem. – Oecologia 169: 257-268, 2012. 10.1007/s00442-011-2184-9 PubMed DOI
Mkhize K.G.W., Minibayeva F.V., Beckett R.P.: Adaptions of photosynthesis in sun and shade in populations of some Afromontane lichens. – Lichenologist 54: 319-329, 2022. 10.1017/S0024282922000214 DOI
Morales A., Kaiser E.: Photosynthetic acclimation to fluctuating irradiance in plants. – Front. Plant Sci. 11: 268, 2020. 10.3389/fpls.2020.00268 PubMed DOI PMC
Nelsen M.P., Leavitt S.D., Heller K. et al..: Contrasting patterns of climatic niche divergence in Trebouxia – a clade of lichen-forming algae. – Front. Microbiol. 13: 791546, 2022. 10.3389/fmicb.2022.791546 PubMed DOI PMC
Pallardy S.G.: Physiology of Woody Plants. 3rd Edition. Pp. 464. Elsevier, Amsterdam: 2011.
Pannewitz S., Schroeter B., Scheidegger C., Kappen L.: Habitat selection and light conditions: a field study with Lobaria pulmonaria. – In: Jensen M. (ed.): Bibliotheca Lichenologica. Vol. 86. Pp. 281-297. J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, Berlin-Stuttgart: 2003. https://www.researchgate.net/publication/229071395_Habitat_selection_and_light_conditions_A_field_study_with_Lobaria_pulmonaria
Pfleger A., Arc E., Grings M. et al..: Flavodiiron proteins prevent the Mehler reaction in Chlamydomonas reinhardtii. – BBA-Bioenergetics 1865: 149497, 2024. 10.1016/j.bbabio.2024.149497 PubMed DOI
Pinto I., Zachariah M., Wolski P. et al.: Climate change exacerbated rainfall causing devastating flooding in Eastern South Africa, 2022. Available at: https://www.worldweatherattribution.org/wp-content/uploads/WWA-KZN-floods-scientific-report.pdf.
Pospíšil P.: Production of reactive oxygen species by photosystem II as a response to light and temperature stress. – Front. Plant Sci. 7: 1950, 2016. 10.3389/fpls.2016.01950 PubMed DOI PMC
Rambold G., Friedl T., Beck A.: Photobionts in lichens: Possible indicators of phylogenetic relationships? – Bryologist 101: 392-397, 1998. https://www.jstor.org/stable/3244177
Reiter R., Höftberger M., Green T.G.A., Türk R.: Photosynthesis of lichens from lichen-dominated communities in the alpine/nival belt of the Alps – II: Laboratory and field measurements of CO2 exchange and water relations. – Flora 203: 34-46, 2008. 10.1016/j.flora.2007.09.002 DOI
Shang H., Li M., Pan X.W.: Dynamic regulation of the light-harvesting system through state transitions in land plants and green algae. – Plants-Basel 12: 1173, 2023. 10.3390/plants12051173 PubMed DOI PMC
Solhaug K.A., Gauslaa Y., Nybakken L., Bilger W.: UV-induction of sun-screening pigments in lichens. – New Phytol. 158: 91-100, 2003. 10.1046/j.1469-8137.2003.00708.x DOI
Stanton D.E., Ormond A., Koch N.M., Colesie C.: Lichen ecophysiology in a changing climate. – Am. J. Bot. 110: e16131, 2023. 10.1002/ajb2.16131 PubMed DOI
Steen C.J., Burlacot A., Short A.H. et al..: Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations. – Plant Cell Environ. 45: 2428-2445, 2022. 10.1111/pce.14372 PubMed DOI PMC
Timm S., Eisenhut M.: Four plus one: vacuoles serve in photorespiration. – Trends Plant Sci. 28: 1340-1343, 2023. 10.1016/j.tplants.2023.08.008 PubMed DOI